Skip to main content
Log in

Characterizing Anisotropic Rocks Using a Modified St. Venant Method and High-Resolution Core Measurements with Extension to Field Logs

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Hydraulic fracture modeling has progressed into a high impact decision-making tool for the unconventional petroleum industry. However, the main influence on the model results are the rock mechanical inputs, typically derived from field logs and supplemented by core measurements, and the uncertainty associated to these. The strongly layered nature of unconventional mudstones, however, requires representation of the high contrast in properties between layers, and their anisotropic elastic behavior. This investigation provides an integrated method for experimentally measuring elastic mechanical properties from new anisotropic ultrasonic measurements at sufficiently high resolution (cm scale) to honor the rock fabric along with triaxial compressional data on sample plugs. These results are analyzed, compared, and integrated using a newly developed methodology, based on St. Venant’s reduced symmetry approximation, to develop a continuous representation of the elastic properties and their associated uncertainties. For cases where core is not available, we provide a method to reconstruct anisotropic properties at cm resolution using standard resolution field logs and a borehole image log. A case study on a core from the Permian basin is presented and verified against a standard workflow. Additionally, the methodology to propagate from the cored well to nearby regions (e.g., formations above the cored interval) is demonstrated for cases where logs are available, but core data are not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\({C}_{ij}\) :

Stiffness tensor terms (Voigt notation)

\({S}_{ij}\) :

Compliance tensor terms (Voigt notation)

\({E}_{i}\) :

Young’s modulus

\({\nu }_{ij}\) :

Poisson’s ratio

\(\nu\) :

Poisson’s ratio—Saint Venant 3-term

\({\nu }_{i}\) :

Poisson’s ratio—Saint Venant 4-term

\({G}_{ij}\) :

Shear modulus

\(\rho\) :

Density

\({\sigma }_{i}\) :

Stress

\({K}_{0}\) :

Horizontal to vertical stress ratio

\({V}_{\mathrm{P}\mathrm{i}}\) :

P-wave velocity

\({V}_{\mathrm{s}\mathrm{i}}\) :

S-wave velocity

\({x}_{i}\) :

Model parameters (i = 1N)

\(m({x}_{i})\) :

Model results as function of x

\(d\) :

Observed data (i = 1…N)

\({\Sigma }\) :

Data covariance matrix

\(L({x}_{i})\) :

Unnormalized log-likelihood

\(|\psi |\) :

Structural constraint

\(H\) :

Point spread function

z :

Latent model parameters

1 :

Matrix inverse

T :

Transpose

*:

Convolution

U :

Left singular matrix

V :

Right singular matrix

References

  • Abell B, Sassen S (2020) Mechanical logs for hydraulic fracture modeling-honoring rock fabric with high resolution data. In: 54th US rock mechanics/geomechanics symposium, ARMA, Golden

  • Andrade A, Morttz-Luthi S (1993) Deconvolution of wireline logs using point-spread function. In: 3rd International Congress of the Brazilian Geophysical Society. European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609-pdb.324.866

  • Backus GE (1962) Long-wave elastic anisotropy produced by horizontal layering. J Geophys Res 67(11):4427–4440

    Article  Google Scholar 

  • Daubechies I, Heil C (1992) Ten lectures on wavelets ingrid. Comput Phys. https://doi.org/10.1063/1.4823127

    Article  Google Scholar 

  • Dontsov E (2017) A homogenization approach for modeling a propagating hydraulic fracture in a layered material. Geophysics 82(6):MR153–MR162

    Article  Google Scholar 

  • Dontsov E (2019) Scaling laws for hydraulic fractures driven by a power-law fluid in homogeneous anisotropic rocks. Int J Numer Anal Methods Geomech 43:519–529

    Article  Google Scholar 

  • Dontsov E, Bunger A, Abell B, Suarez-Rivera R (2019) Ultrafast hydraulic fracturing model for optimizing cube development. In: Unconventional resources technology conference, Denver. https://doi.org/10.15530/urtec-2019-884

  • Friedman J (1999) Greedy function approximation: a gradient booting machine. IMS Reitz Lecture

  • Glaser S, Weiss G, Johnson L (1998) Body waves recorded inside an elastic half-space by an embedded, wideband velocity sensor. J Acoust Soc Am 104(3):1404–1412

    Article  Google Scholar 

  • Gubbins D (2004) Time series analysis and inverse theory for geophysicists. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511840302

    Book  Google Scholar 

  • He K, Sun J, Tang X (2013) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 35(6):1397–1409. https://doi.org/10.1109/TPAMI.2012.213

    Article  Google Scholar 

  • Higgins S, Goodwin S, Donald A, Bratton T, Tracy G (2008) Anisotropic stress models improve completion design in the Baxter shale. In: SPE annual technical conference, Denver, pp 1–10

  • Jiang L, Yoon H, Bobet A, Pyrak-Nolte L (2020) Mineral fabric as a hidden variable in fracture formation in layered media. Sci Rep. https://doi.org/10.1038/s41598-020-58793-y

    Article  Google Scholar 

  • Lonardelli I, Wenk H, Ren Y (2007) Preferred orientation and elastic anisotropy in shales. Geophysics 72(2):D33–D40

    Article  Google Scholar 

  • Mallat S (2009) A wavelet tour of signal processing (third edition): chapter 11 - denoising. Academic Press, pp 535–610. https://doi.org/10.1016/B978-0-12-374370-1.00015-X (ISBN 9780123743701)

    Book  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook: tools for seismic analysis of porous media, 2nd edn. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511626753

    Book  Google Scholar 

  • Padin A, Pijaudier-Cabot G, Lejay A, Pourpak H, Mathieu J, Onaisi A, Boitnott G, Louis L (2019) High-resolution measurements of elasticity at core scale. Improving mechanical earth model calibration at the Vaca Muerta formation. In: Unconventional resources technology conference, Denver, p 13. https://doi.org/10.15530/urtec-2019-A-121-URTeC

  • Pouya A (2007) Ellipsoidal anisotropies in linear elasticity extension of Saint Venant’s work to phenomenological modelling of materials. Int J Damage Mech 16:95–126

    Article  Google Scholar 

  • Pouya A (2011) Ellipsoidal anisotropy in linear elasticity: approximation models and analytical solutions. Int J Solids Struct 48:2245–2254. https://doi.org/10.1016/j.ijsolstr.2011.03.028

    Article  Google Scholar 

  • Pyrak-Nolte L, Myer L, Cook N (1990) Transmission of seismic waves across single natural fractures. J Geophys Res 95(B6):8617–8638

    Article  Google Scholar 

  • Pyrak-Nolte L, Shao S, Abell B (2017) Elastic waves in fractured isotropic and anisotropic media. In: Feng X (ed) Rock mechanics and engineering, chap. 11, vol 1. CRC Press/Balkema, London, pp 323–361

    Google Scholar 

  • Saint Venant B (1863) Sur la distribution des elasticites autour de chaque point d’un solide ou d’un milieu de contexture quelconque, particulierement lorsqui’il est amorphe sans etre isotrope. Journal De Math Pures Et Appliquees VIII:257–430

    Google Scholar 

  • Schoenberg M, Muir M, Sayers C (1996) Introducing ANNIE: a simple three-parameter anisotropic velocity model for shales. J Seism Explor 5:35–49

    Google Scholar 

  • Taylor J (1982) An introduction to error analysis: the study of uncertainties in physical measurements. University Science Books, Mill Valey

    Google Scholar 

  • Wang Y, Li H, Mitra A, Han DH, Long T (2020) Anisotropic strength and failure behaviors of transversely isotropic shales: an experimental investigation. Interpretation 8(3):1A–Y1. https://doi.org/10.1190/INT-2019-0275.1

    Article  Google Scholar 

  • White JE, Tongtaow C (1981) Cylindrical waves in transversely isotropic media. J Acoust Soc Am 70:1147

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sassen.

Ethics declarations

Conflict of Interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sassen, D., Abell, B. Characterizing Anisotropic Rocks Using a Modified St. Venant Method and High-Resolution Core Measurements with Extension to Field Logs. Rock Mech Rock Eng 55, 2949–2963 (2022). https://doi.org/10.1007/s00603-021-02531-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-021-02531-x

Keywords

Navigation