Skip to main content
Log in

3D Cutting Force Model of a Stinger PDC Cutter: Considering Confining Pressure and the Thermal Stress

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Cutting force prediction of the Stinger PDC cutter is a critically important work for the hybrid PDC bit design, which will directly affect the working stability and rock-breaking efficiency of drill bits. Thermal stress caused by drilling fluid cooling high temperature rock has significant influence on cutting force in geothermal drilling. However, to our best knowledge, the investigation of thermal stress in cutting force models for Stinger PDC is still limited. This paper presents a 3D cutting force analytical model of a Stinger PDC cutter based on the rock stress analysis, which considers the comprehensive influences of in-situ stress, hydrostatic pressure, and thermal stress. The model accuracy is validated by experimental data with less than 7% error in atmosphere condition. The simulation results show that a spherical shape stress concentration zone around the Stinger PDC cutter tip is formed, where the rock is mainly subjected to tensile stress. With the increase of in-situ stress and hydrostatic pressure, the cutting force increases linearly, but the hydrostatic pressure has smaller influence on the cutting force than in-situ stress. The induced thermal stress belongs to tensile stress, which can sharply decrease the cutting force, and the amplitude of cutting force reduction reaches 74% at cutting depth of 1 mm when the formation temperature is 300 °C. In addition, the cutting force also reduces with the increase of the formation temperature and the heat transfer coefficient. The key findings of the work will be expected to help design the hybrid PDC bit used in geothermal drilling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

\({C}_{0}\) :

Cohesive strength of rock

\(E,G\) :

Elasticity and shear modulus of rock

\({f}_{i}\) :

The body force

\(F\) :

Force exerted by the Stinger PDC cutter

\({F}_{\mathrm{c}}\) :

Cutting force

\({F}_{\mathrm{n}}\) :

Normal force

\(N\) :

Contact force

\({P}_{\mathrm{m}}\) :

Hydrostatic pressure

\(S\) :

Friction force

\(T\) :

Temperature

\({T}_{\mathrm{r}}\) :

Initial rock temperature

\({T}_{\mathrm{f}}\) :

Drilling mud temperature

\(t\) :

Time

\(u\) :

Displacement

\(\alpha\) :

Forward rake angle

\(\theta\) :

Half cone-tip angle of cutter

\(\rho\) :

Density of rock

\({\sigma }_{\mathrm{T}}\) :

Thermal stress

\({\sigma }_{\mathrm{H}}\) :

Maximum horizontal in-situ stress

\({\sigma }_{\mathrm{h}}\) :

Minimum horizontal in-situ stress

\(\sigma\) :

Normal stress in rock

\(\tau\) :

Shear stress in rock

\(v\) :

Poisson’s ratio of rock

\(\varphi\) :

Friction angle

\(\varnothing\) :

Internal friction angle of rock

\(i, j, k\) :

Components of a vector

References

  • Abdila SF, Sondang J, Maaruf P, Mardiana M, Noviasta B, Astasari K, Febriarto H (2018) Drilling optimisation in hard and abrasive basement rock using a conical diamond element bit, IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition. Society of Petroleum Engineers

  • Amri M, Pelfrene G, Gerbaud L, Sellami H, Tijani M (2016) Experimental investigations of rate effects on drilling forces under bottomhole pressure. J Petrol Sci Eng 147:585–592

    Article  Google Scholar 

  • Azar M, White A, Segal S, Velvaluri S, Garcia G, Taylor M (2013) Pointing towards improved PDC bit performance: innovative conical shaped polycrystalline diamond element achieves higher ROP and total footage, SPE/IADC Drilling Conference. Society of Petroleum Engineers

  • Barton CA, Zoback MD, Burns KL (1988) In-situ stress orientation and magnitude at the Fenton Geothermal Site, New Mexico, determined from wellbore breakouts. Geophys Res Lett 15(5):467–470

    Article  Google Scholar 

  • Baujard C, Hehn R, Genter A, Teza D, Baumgärtner J, Guinot F, Martin A, Steinlechner S (2017) Rate of penetration of geothermal wells: a key challenge in hard rocks, Workshop on geothermal reservoir engineering. Stanford University, USA

    Google Scholar 

  • Bilgin N, Demircin M, Copur H, Balci C, Tuncdemir H, Akcin N (2006) Dominant rock properties affecting the performance of conical picks and the comparison of some experimental and theoretical results. Int J Rock Mech Min Sci 43(1):139–156

    Article  Google Scholar 

  • Che D, Ehmann K (2014) Experimental study of force responses in polycrystalline diamond face turning of rock. Int J Rock Mech Min Sci 72:80–91

    Article  Google Scholar 

  • Che D, Zhu W-L, Ehmann KF (2016) Chipping and crushing mechanisms in orthogonal rock cutting. Int J Mech Sci 119:224–236

    Article  Google Scholar 

  • Chen P, Miska SZ, Ren R, Yu M, Ozbayoglu E, Takach N (2018) Poroelastic modeling of cutting rock in pressurized condition. J Petrol Sci Eng 169:623–635

    Article  Google Scholar 

  • Chen P, Meng M, Miska S, Yu M, Ozbayoglu E, Takach N (2019a) Study on integrated effect of PDC double cutters. J Petrol Sci Eng 178:1128–1142

    Article  Google Scholar 

  • Chen P, Meng M, Ren R, Miska S, Yu M, Ozbayoglu E, Takach N (2019b) Modeling of PDC single cutter–Poroelastic effects in rock cutting process. J Petrol Sci Eng 183:106389

    Article  Google Scholar 

  • Cheng Z, Li G, Huang Z, Sheng M, Wu X, Yang J (2019) Analytical modelling of rock cutting force and failure surface in linear cutting test by single PDC cutter. J Petrol Sci Eng 177:306–316

    Article  Google Scholar 

  • Dreesen DS, Cocks GG, Nicholson RW, Thomson JC (1989) Repair, sidetrack, drilling, and completion of EE-2A for Phase 2 reservoir production service. United States: N. p. https://doi.org/10.2172/5999600

  • Durrand CJ, Skeem MR, Crockett RB, Hall DR (2010) Super-hard, thick, shaped PDC cutters for hard rock drilling: development and test results. In Proc. Thirty- Fifth Workshop on Geothermal Reservoir Engineering, February 1–3, 2010 (pp. 1–8). https://www.semanticscholar.org/paper/SUPER-HARD-%2C-THICK-%2C-SHAPED-PDC-CUTTERS-FOR-HARD-%3A-Durrand-Skeem/e7333e6a1a6e9fad60b08c748fdd2a304785335c?p2df

  • Evans I (1984) A theory of the cutting force for point-attack picks. Int J Min Eng 2(1):63–71

    Article  Google Scholar 

  • Ewy R (1999) Wellbore-stability predictions by use of a modified Lade criterion. SPE Drill Complete 14(02):85–91

    Article  Google Scholar 

  • Goktan R (1997) A suggested improvement on Evans’ cutting theory for conical bits, Proceedings of fourth symposium on mine mechanization automation, pp. 57–61

  • Hao S, Wasantha PP, Ranjith PG, Chen B (2014) Effect of cooling rate on the mechanical behavior of heated Strathbogie granite with different grain sizes. Int J Rock Mech Min Sci 70:381–387

    Article  Google Scholar 

  • Huang H, Lecampion B, Detournay E (2013) Discrete element modeling of tool-rock interaction I: rock cutting. Int J Numer Anal Meth Geomech 37(13):1913–1929

    Article  Google Scholar 

  • Iskandar FF, Fanti D, Liang TT (2016) Innovative conical diamond element bits deliver superior performance drilling a geothermal well in the Philippines, offshore technology conference Asia. Offshore technology conference

  • Kaitkay P, Lei S (2005) Experimental study of rock cutting under external hydrostatic pressure. J Mater Process Technol 159(2):206–213

    Article  Google Scholar 

  • Kazi A, Riyaz M, Tang X, Staack D, Tai B (2020) Specific cutting energy reduction of granite using plasma treatment: a feasibility study for future geothermal drilling. Proced Manuf 48:514–519

    Article  Google Scholar 

  • Laughlin A, Eddy A, Laney R, Aldrich M Jr (1983) Geology of the Fenton Hill, New Mexico, hot dry rock site. J Volcanol Geoth Res 15(1–3):21–41

    Article  Google Scholar 

  • Li X, Feng Y, El Mohtar CS, Gray K (2019) Transient modeling of borehole breakouts: a coupled thermo-hydro-mechanical approach. J Petrol Sci Eng 172:1014–1024

    Article  Google Scholar 

  • Li W, Ling X, Pu H (2020) Development of a cutting force model for a single PDC cutter based on the rock stress state. Rock Mech Rock Eng 53(1):185–200

    Article  Google Scholar 

  • Lu S-M (2018) A global review of enhanced geothermal system (EGS). Renew Sustain Energy Rev 81:2902–2921

    Article  Google Scholar 

  • Nishimatsu Y (1972) The mechanics of rock cutting. Int J Rock Mech Min Sci Geomech Abstr. Elsevier, pp. 261–270

  • Nwoji C, Onah H, Mama B, Ike C (2017) Solution of the Boussinesq problem of half space using Green and Zerna displacement potential function method. Electron J Geotech Eng (EJGE) 22(11):4305–4314

    Google Scholar 

  • Okumura IA (1995) On the generalization of Cerruti’s problem in an elastic half-space. Doboku Gakkai Ronbunshu 519:1–10

    Article  Google Scholar 

  • Padio-Guidugli P, Favata A (2014) Elasticity for geotechnicians: A modern exposition of Kelvin, Boussinesq, Flammant, Cerrutti, Melan and Mindlin problems. Solid mechanics and its applications. https://link.springer.com/book/10.1007%2F978-3-319-01258-2

  • Rafatian N, Miska SZ, Ledgerwood LW, Yu M, Ahmed R, Takach NE (2010) Experimental study of MSE of a single PDC cutter interacting with rock under simulated pressurized conditions. SPE Drill Complet 25(01):10–18

    Article  Google Scholar 

  • Roxborough F, Liu Z (1995) Theoretical considerations on pick shape in rock and coal cutting, Proceedings of the sixth underground operator’s conference, Kalgoorlie, pp. 189–193

  • Wu X, Huang Z, Cheng Z, Zhang S, Song H, Zhao X (2019a) Effects of cyclic heating and LN2-cooling on the physical and mechanical properties of granite. Appl Therm Eng 156:99–110

    Article  Google Scholar 

  • Wu X, Huang Z, Song H, Zhang S, Cheng Z, Li R, Wen H, Huang P, Dai X (2019b) Variations of physical and mechanical properties of heated granite after rapid cooling with liquid nitrogen. Rock Mech Rock Eng 52(7):2123–2139

    Article  Google Scholar 

  • Xiong C, Dai X, Shi H, Huang Z, Chen Z, Zhao H (2020a) Investigation on rock breakage mechanism of stinger PDC cutter and hybrid cutter arrangement design, 54th US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Xiong C, Huang Z, Yang R, Sheng M, Shi H, Dai X, Wu X, Zhang S (2020b) Comparative analysis cutting characteristics of stinger PDC cutter and conventional PDC cutter. J Petrol Sci Eng 189:106792

    Article  Google Scholar 

  • Zhang S, Huang Z, Huang P, Wu X, Xiong C, Zhang C (2018) Numerical and experimental analysis of hot dry rock fracturing stimulation with high-pressure abrasive liquid nitrogen jet. J Petrol Sci Eng 163:156–165

    Article  Google Scholar 

  • Zhu J, Hu K, Lu X, Huang X, Liu K, Wu X (2015) A review of geothermal energy resources, development, and applications in China: current status and prospects. Energy 93:466–483

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Financially supported by National Key Research and Development Program of China (No. 2018YFC0604304) and National Science Fund for Distinguished Young Scholars (No. 51725404). Besides, this work was also supported by the ‘111’project of China (No. 110000203920170063) and Beijing Outstanding Young Scientist Program (No. BJJWZYJH01201911414038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwei Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivation of force \({{\varvec{F}}}_{{\varvec{c}}1}\), \({{\varvec{F}}}_{{\varvec{c}}2}\) and \({{\varvec{F}}}_{{\varvec{n}}}\)

In this section, the detailed derivation process of Eq. (6) is shown. According to Eq. (2), Eq. (3), Eq. (4), and Eq. (5), the known conditions can be expressed as:

$$\gamma { = }\theta - \Omega .$$
(26)
$$\sin \Omega = \sin \beta \sin \alpha .$$
(27)
$$\cos \phi = \sin \beta \sin \alpha .$$
(28)
$$\begin{gathered} F_{1} = {{N \cdot \sin \gamma } \mathord{\left/ {\vphantom {{N \cdot \sin \gamma } {\sin \phi }}} \right. \kern-\nulldelimiterspace} {\sin \phi }} + {{S_{1} \cdot \cos \gamma } \mathord{\left/ {\vphantom {{S_{1} \cdot \cos \gamma } {\sin \phi }}} \right. \kern-\nulldelimiterspace} {\sin \phi }} \hfill \\ F_{2} = {{N \cdot \sin \gamma } \mathord{\left/ {\vphantom {{N \cdot \sin \gamma } {\tan \phi }}} \right. \kern-\nulldelimiterspace} {\tan \phi }} + {{S_{1} \cdot \cos \gamma } \mathord{\left/ {\vphantom {{S_{1} \cdot \cos \gamma } {\tan \phi }}} \right. \kern-\nulldelimiterspace} {\tan \phi }} \hfill \\ F_{3} = {{N \cdot \cos \gamma - S_{1} \cdot \sin \gamma - N \cdot \sin \gamma } \mathord{\left/ {\vphantom {{N \cdot \cos \gamma - S_{1} \cdot \sin \gamma - N \cdot \sin \gamma } {\tan \phi }}} \right. \kern-\nulldelimiterspace} {\tan \phi }} - {{S_{1} \cdot \cos \gamma } \mathord{\left/ {\vphantom {{S_{1} \cdot \cos \gamma } {\tan \phi }}} \right. \kern-\nulldelimiterspace} {\tan \phi }}. \hfill \\ \end{gathered}$$
(29)

Thus, according to Eq. (26), the \(cos\gamma\) and \(sin\gamma\) can be express as:

$$\begin{gathered} \cos \gamma = \cos (\theta - \Omega ) = \cos \theta \cos \Omega + \sin \theta \sin \Omega \hfill \\ \sin \gamma = \sin (\theta - \Omega ) = \sin \theta \cos \Omega - \cos \theta \sin \Omega . \hfill \\ \end{gathered}$$
(30)

Substitute Eq. (30) into Eq. (29):

$$\begin{gathered} F_{c1} = 2\int_{0}^{{\frac{\pi }{2}}} {F_{3} \sin \beta } d\beta { = }2\int_{0}^{{\frac{\pi }{2}}} {N \cdot \cos \gamma \cdot \sin \beta } d\beta - 2\int_{0}^{{\frac{\pi }{2}}} {S_{1} \cdot \sin \gamma \cdot \sin \beta } d\beta \hfill \\ \quad \quad \quad \quad \quad - 2\int_{0}^{{\frac{\pi }{2}}} {N \cdot {{\sin \gamma } \mathord{\left/ {\vphantom {{\sin \gamma } {\tan \phi }}} \right. \kern-\nulldelimiterspace} {\tan \phi }}} \cdot \sin \beta d\beta - 2\int_{0}^{{\frac{\pi }{2}}} {S_{1} \cdot {{\cos \gamma } \mathord{\left/ {\vphantom {{\cos \gamma } {\tan \phi }}} \right. \kern-\nulldelimiterspace} {\tan \phi }}} \cdot \sin \beta d\beta . \hfill \\ \end{gathered}$$
(31)

(1) the detailed derivation process of: \(2N{\int }_{0}^{\frac{\pi }{2}}cos\gamma sin\beta d\beta -2{S}_{1}{\int }_{0}^{\frac{\pi }{2}}sin\gamma sin\beta d\beta\)

$$\begin{gathered} 2N\int_{0}^{{\frac{\pi }{2}}} {\cos \gamma \sin \beta d\beta } - 2S_{1} \int_{0}^{{\frac{\pi }{2}}} {\sin \gamma \sin \beta d\beta } \hfill \\ = 2N\int_{0}^{{\frac{\pi }{2}}} {\left( {\cos \theta \cos \Omega + \sin \theta \sin \Omega } \right)\sin \beta } d\beta - 2S_{1} \int_{0}^{{\frac{\pi }{2}}} {\left( {\sin \theta \cos \Omega - \cos \theta \sin \Omega } \right)\sin \beta d\beta } \hfill \\ = \left( {2N\cos \theta - 2S_{1} \sin \theta } \right)\int_{0}^{{\frac{\pi }{2}}} {\cos \Omega \sin \beta d\beta } + \left( {2N\sin \theta + 2S_{1} \cos \theta } \right)\int_{0}^{{\frac{\pi }{2}}} {\sin \Omega \sin \beta d\beta } . \hfill \\ \end{gathered}$$
(32)

the detailed derivation process of: \({\int }_{0}^{\frac{\pi }{2}}cos\Omega sin\beta d\beta\)

$$\int_{0}^{{\frac{\pi }{2}}} {\cos \Omega \sin \beta d\beta = } \int_{0}^{{\frac{\pi }{2}}} {\sqrt {1 - \sin^{2} \Omega } \sin \beta d\beta } .$$
(33)

Substitute Eq. (27) into Eq. (33):

$$\int_{0}^{{\frac{\pi }{2}}} {\cos \Omega \sin \beta d\beta = } \int_{0}^{{\frac{\pi }{2}}} {\sqrt {1 - \sin^{2} \beta \sin^{2} \alpha } \sin \beta d\beta = } \int_{0}^{{\frac{\pi }{2}}} {\sqrt {1 - \sin^{2} \alpha + cos^{2} \beta \sin^{2} \alpha } \sin \beta d\beta } .$$
(34)

Set \(x=cos\beta\), Eq. (34) can be expressed as:

$$- \int_{0}^{{\tfrac{\pi }{2}}} {\sqrt {\cos^{2} \alpha + \sin^{2} \alpha cos^{2} \beta } d\left( {\cos \beta } \right)} = \int_{0}^{1} {\sqrt {\cos^{2} \alpha + \sin^{2} \alpha \cdot x^{2} } dx} .$$
(35)

Set \(a=cos\alpha\), \(b=sin\alpha\), Eq. (35) can be expressed as:

$$\begin{gathered} \int_{0}^{1} {\sqrt {a^{2} + b^{2} x^{2} } dx = b} \int_{0}^{1} {\sqrt {\left( \frac{a}{b} \right)^{2} + x^{2} } dx} \hfill \\ = b \cdot \left[ {\frac{x}{2}\sqrt {\left( \frac{a}{b} \right)^{2} + x^{2} } + \frac{1}{2}\left( \frac{a}{b} \right)^{2} \ln \left( {x + \sqrt {\left( \frac{a}{b} \right)^{2} + x^{2} } } \right)} \right]\left| {\begin{array}{*{20}c} 1 \\ 0 \\ \end{array} } \right. \hfill \\ { = }b \cdot \left[ {\frac{1}{2}\sqrt {\left( \frac{a}{b} \right)^{2} + 1} + \frac{1}{2}\left( \frac{a}{b} \right)^{2} \ln \left( {1 + \sqrt {\left( \frac{a}{b} \right)^{2} + 1} } \right) - \frac{1}{2}\left( \frac{a}{b} \right)^{2} \ln \frac{a}{b}} \right]. \hfill \\ = \frac{b}{2} \cdot \left[ {\sqrt {\left( \frac{a}{b} \right)^{2} + 1} + \left( \frac{a}{b} \right)^{2} \ln \left( {1 + \sqrt {\left( \frac{a}{b} \right)^{2} + 1} } \right) - \left( \frac{a}{b} \right)^{2} \ln \frac{a}{b}} \right] \hfill \\ { = }\frac{1}{2}{ + }\frac{{a^{2} }}{2b}\ln \frac{b + 1}{a} \hfill \\ \end{gathered}$$
(36)

So

$$\int_{0}^{{\frac{\pi }{2}}} {\cos \Omega \sin \beta d\beta = } \frac{1}{2} + \frac{{\cos^{2} \alpha }}{2\sin \alpha }\ln \frac{\sin \alpha + 1}{{\cos \alpha }}.$$
(37)

the detailed derivation process of: \({\int }_{0}^{\frac{\pi }{2}}sin\Omega sin\beta d\beta\)

$$\begin{gathered} \int_{0}^{{\frac{\pi }{2}}} {\sin \Omega \sin \beta d\beta } { = }\int_{0}^{{\frac{\pi }{2}}} {\sin \alpha \sin^{2} \beta d\beta } = \sin \alpha \int_{0}^{{\frac{\pi }{2}}} {\sin^{2} \beta d\beta } \hfill \\ = \sin \alpha \int_{0}^{{\frac{\pi }{2}}} {\frac{1 - \cos 2\beta }{2}d\beta } = \sin \alpha \cdot \left[ {\frac{\beta }{2} - \frac{\sin 2\beta }{4}} \right]\left| {\begin{array}{*{20}c} {\frac{\pi }{2}} \\ 0 \\ \end{array} } \right. = \frac{\pi }{4}\sin \alpha . \hfill \\ \end{gathered}$$
(38)

Substitute Eq. (37) and Eq. (38) into Eq. (32), \(2N{\int }_{0}^{\frac{\pi }{2}}cos\gamma sin\beta d\beta -2{S}_{1}{\int }_{0}^{\frac{\pi }{2}}sin\gamma sin\beta d\beta\) can be expressed as:

$$\begin{gathered} 2N\int_{0}^{{\frac{\pi }{2}}} {\cos \gamma \sin \beta d\beta } - 2S_{1} \int_{0}^{{\frac{\pi }{2}}} {\sin \gamma \sin \beta d\beta } \hfill \\ = \left( {N\cos \theta - S_{1} \sin \theta } \right)\left( {1 + \frac{{\cos^{2} \alpha }}{\sin \alpha }\ln \frac{\sin \alpha + 1}{{\cos \alpha }}} \right) + \left( {N\sin \theta + S_{1} \cos \theta } \right)\left( {\frac{\pi }{2}\sin \alpha } \right). \hfill \\ \end{gathered}$$
(39)

(2) the detailed derivation process of: \(2N{\int }_{0}^{\frac{\pi }{2}}sin\gamma /tan\upphi sin\beta d\beta +2{S}_{1}{\int }_{0}^{\frac{\pi }{2}}cos\gamma /tan\upphi sin\beta d\beta\)

$$\begin{gathered} 2N\int_{0}^{{\frac{\pi }{2}}} {\frac{\sin \gamma }{{\tan \phi }}} \sin \beta d\beta + 2S_{1} \int_{0}^{{\frac{\pi }{2}}} {\frac{\cos \gamma }{{\tan \phi }}} \sin \beta d\beta \hfill \\ = 2N\int_{0}^{{\frac{\pi }{2}}} {\frac{\sin \theta \cos \Omega - \cos \theta \sin \Omega }{{\tan \phi }}} \sin \beta d\beta + 2S_{1} \int_{0}^{{\frac{\pi }{2}}} {\frac{\cos \theta \cos \Omega + \sin \theta \sin \Omega }{{\tan \phi }}} \sin \beta d\beta \hfill \\ = 2N\int_{0}^{{\frac{\pi }{2}}} {\frac{\sin \theta \cos \Omega \sin \alpha - \cos \theta \sin \Omega \sin \alpha }{{\tan \phi \sin \alpha }}} \sin \beta d\beta + 2S_{1} \int_{0}^{{\frac{\pi }{2}}} {\frac{\cos \theta \cos \Omega \sin \alpha + \sin \theta \sin \Omega \sin \alpha }{{\tan \phi \sin \alpha }}} \sin \beta d\beta \hfill \\ = 2N\int_{0}^{{\frac{\pi }{2}}} {\left( {\sin \theta \sin \alpha \sin^{2} \beta - \frac{{\cos \theta \cos^{3} \phi }}{\sin \phi \sin \alpha }} \right)} d\beta + 2S_{1} \int_{0}^{{\frac{\pi }{2}}} {\left( {\cos \theta \sin \alpha \sin^{2} \beta + \frac{{\sin \theta \cos^{3} \phi }}{\sin \phi \sin \alpha }} \right)} d\beta \hfill \\ { = }\left( {2N\sin \theta \sin \alpha + 2S_{1} \cos \theta \sin \alpha } \right)\int_{0}^{{\frac{\pi }{2}}} {\sin^{2} \beta d\beta } + \left( { - 2N\cos \theta + 2S_{1} \sin \theta } \right)\int_{0}^{{\frac{\pi }{2}}} {\frac{{\cos^{3} \phi }}{\sin \phi \sin \alpha }d\beta } . \hfill \\ \end{gathered}$$
(40)

The following is the detailed derivation process of: \({\int }_{0}^{\frac{\pi }{2}}\frac{{cos}^{3}\upphi }{sin\phi sin\alpha }d\beta\)

$$\int_{0}^{{\frac{\pi }{2}}} {\frac{{\cos^{3} \phi }}{\sin \phi \sin \alpha }} d\beta {\text{ = - sin}}^{2} \alpha \int_{0}^{{\frac{\pi }{2}}} {\frac{{{\text{sin}}^{2} \beta }}{{\sqrt {1 - \sin^{2} \alpha + \cos^{2} \beta \sin^{2} \alpha } }}} d\left( {\cos \beta } \right).$$
(41)

Set \(x=cos\beta\), Eq. (41) can be expressed as:

$${\text{ - sin}}^{2} \alpha \int_{0}^{{\frac{\pi }{2}}} {\frac{{{\text{sin}}^{2} \beta }}{{\sqrt {1 - \sin^{2} \alpha + \cos^{2} \beta \sin^{2} \alpha } }}} d\cos \beta {\text{ = sin}}^{2} \alpha \int_{0}^{1} {\frac{{1 - x^{2} }}{{\sqrt {\cos^{2} \alpha + x^{2} \sin^{2} \alpha } }}} dx.$$
(42)

Set \(a=cos\alpha\), \(b=sin\alpha\), Eq. (42) can be expressed as:

$$\begin{gathered} {\text{sin}}^{2} \alpha \int_{0}^{1} {\frac{{1 - x^{2} }}{{\sqrt {\cos^{2} \alpha + x^{2} \sin^{2} \alpha } }}} dx \hfill \\ = b\int_{0}^{1} {\frac{{1 - x^{2} }}{{\sqrt {\left( \frac{a}{b} \right)^{2} + x^{2} } }}} dx = b\int_{0}^{1} {\frac{1}{{\sqrt {\left( \frac{a}{b} \right)^{2} + x^{2} } }}} dx - b\int_{0}^{1} {\frac{{x^{2} }}{{\sqrt {\left( \frac{a}{b} \right)^{2} + x^{2} } }}} dx \hfill \\ = b\left[ {\ln (x + \sqrt {\left( \frac{a}{b} \right)^{2} + x^{2} } )} \right]_{0}^{1} - b\left[ {\frac{x}{2}\sqrt {\left( \frac{a}{b} \right)^{2} + x^{2} } - \frac{1}{2}\left( \frac{a}{b} \right)^{2} \ln (x + \sqrt {\left( \frac{a}{b} \right)^{2} + x^{2} } )} \right]_{0}^{1} \hfill \\ = b\left[ {\ln (1 + \sqrt {\left( \frac{a}{b} \right)^{2} + 1} )} \right] - b\ln (\frac{a}{b}) - b\left[ {\frac{1}{2}\sqrt {\left( \frac{a}{b} \right)^{2} + 1} - \frac{1}{2}\left( \frac{a}{b} \right)^{2} \ln (1 + \sqrt {\left( \frac{a}{b} \right)^{2} + 1} )} \right] - \frac{a}{2b}^{2} \ln (\frac{a}{b}) \hfill \\ { = }\frac{{a^{2} + 2b^{2} }}{2b}\ln \left( {\frac{b + 1}{b}} \right) - \frac{{a^{2} + 2b^{2} }}{2b}\ln (\frac{a}{b}) - \frac{1}{2} \hfill \\ = \frac{{1 + b^{2} }}{2b}\ln \left( {\frac{b + 1}{a}} \right) - \frac{1}{2}. \hfill \\ \end{gathered}$$
(43)

So

$$\int_{0}^{{\frac{\pi }{2}}} {\frac{{\cos^{3} \phi }}{\sin \phi \sin \alpha }d\beta = } \frac{{1 + \sin^{2} \alpha }}{2\sin \alpha }\ln \frac{\sin \alpha + 1}{{\cos \alpha }} - \frac{1}{2}.$$
(44)

Substitute Eq. (38) and Eq. (44) into Eq. (40), \(2N{\int }_{0}^{\frac{\pi }{2}}sin\gamma /tan\upphi sin\beta d\beta +2{S}_{1}{\int }_{0}^{\frac{\pi }{2}}cos\gamma /tan\upphi sin\beta d\beta\) can be expressed as:

$$\begin{gathered} 2N\int_{0}^{{\frac{\pi }{2}}} {\frac{\sin \gamma }{{\tan \phi }}} \sin \beta d\beta + 2S_{1} \int_{0}^{{\frac{\pi }{2}}} {\frac{\cos \gamma }{{\tan \phi }}} \sin \beta d\beta \hfill \\ { = }\left( {N\sin \theta \sin \alpha + S_{1} \cos \theta \sin \alpha } \right)\frac{\pi }{2} + \left( { - N\cos \theta + S_{1} \sin \theta } \right)\left( {\frac{{1 + \sin^{2} \alpha }}{\sin \alpha }\ln \frac{\sin \alpha + 1}{{\cos \alpha }} - 1} \right). \hfill \\ \end{gathered}$$
(45)

Substitute Eq. (39) and Eq. (45) into Eq. (31), the formula of \({F}_{c1}\) can be obtained:

$$F_{c1} = \frac{2N}{{\sin \alpha }}\ln \frac{\sin \alpha + 1}{{\cos \alpha }}\cos \theta - \frac{{2S_{1} }}{\sin \alpha }\ln \frac{\sin \alpha + 1}{{\cos \alpha }}\sin \theta .$$
(46)

The formula of \({F}_{c2}\) and \({F}_{n}\) can be expressed as:

$$\begin{gathered} F_{c2} = 2\int_{0}^{{\frac{\pi }{2}}} {F_{1} \sin \alpha } d\beta = 2\sin \alpha \int_{0}^{{\frac{\pi }{2}}} {\left( {N{{\sin \gamma } \mathord{\left/ {\vphantom {{\sin \gamma } {\sin \phi }}} \right. \kern-\nulldelimiterspace} {\sin \phi }} + {{S_{1} \cdot \cos \gamma } \mathord{\left/ {\vphantom {{S_{1} \cdot \cos \gamma } {\sin \phi }}} \right. \kern-\nulldelimiterspace} {\sin \phi }}} \right)d\beta } \hfill \\ F_{n} = 2\int_{0}^{{\frac{\pi }{2}}} {F_{1} \cos \alpha } d\beta = 2\cos \alpha \int_{0}^{{\frac{\pi }{2}}} {\left( {N{{\sin \gamma } \mathord{\left/ {\vphantom {{\sin \gamma } {\sin \phi }}} \right. \kern-\nulldelimiterspace} {\sin \phi }} + {{S_{1} \cdot \cos \gamma } \mathord{\left/ {\vphantom {{S_{1} \cdot \cos \gamma } {\sin \phi }}} \right. \kern-\nulldelimiterspace} {\sin \phi }}} \right)d\beta } . \hfill \\ \end{gathered}$$
(47)

The detailed derivation process of: \(2{\int }_{0}^{\frac{\pi }{2}}\left(Nsin\gamma /sin\phi +{S}_{1}cos\gamma /sin\phi \right)d\beta\)

$$\begin{gathered} 2\int_{0}^{{\frac{\pi }{2}}} {\left( {N{{\sin \gamma } \mathord{\left/ {\vphantom {{\sin \gamma } {\sin \phi }}} \right. \kern-\nulldelimiterspace} {\sin \phi }} + {{S_{1} \cdot \cos \gamma } \mathord{\left/ {\vphantom {{S_{1} \cdot \cos \gamma } {\sin \phi }}} \right. \kern-\nulldelimiterspace} {\sin \phi }}} \right)} d\beta \hfill \\ = 2\int_{0}^{{\frac{\pi }{2}}} {\left( {N\frac{\sin \theta \cos \Omega - \cos \theta \sin \Omega }{{\sin \phi }} + S_{1} \frac{\cos \theta \cos \Omega + \sin \theta \sin \Omega }{{\sin \phi }}} \right)} d\beta \hfill \\ = 2\int_{0}^{{\frac{\pi }{2}}} {\left( {N\sin \theta - N\frac{\cos \theta \cos \phi }{{\sin \phi }} + S_{1} \cos \theta + S_{1} \frac{\sin \theta \cos \phi }{{\sin \phi }}} \right)} d\beta \hfill \\ = \pi N\sin \theta + \pi S_{1} \cos \theta + 2\left( {S_{1} \sin \theta - N\cos \theta } \right)\int_{0}^{{\frac{\pi }{2}}} {\frac{\cos \phi }{{\sin \phi }}d\beta } . \hfill \\ \end{gathered}$$
(48)

The following is the detailed derivation process of: \({\int }_{0}^{\frac{\pi }{2}}\frac{cos\upphi }{sin\phi }d\beta\)

$$\begin{gathered} 2\int_{0}^{{\frac{\pi }{2}}} {\frac{\cos \phi }{{\sin \phi }}} d\beta = 2\int_{0}^{{\frac{\pi }{2}}} {\frac{\sin \beta \sin \alpha }{{\sqrt {1 - \sin^{2} \beta \sin^{2} \alpha } }}} d\beta \hfill \\ = - 2\sin \alpha \int_{0}^{{\frac{\pi }{2}}} {\frac{1}{{\sqrt {1 - \sin^{2} \alpha + \cos^{2} \beta \sin^{2} \alpha } }}} d\cos \beta . \hfill \\ \end{gathered}$$
(49)

Set \(a=cos\alpha\), \(b=sin\alpha\), Eq. (49) can be expressed as:

$$\begin{gathered} 2\int_{0}^{{\frac{\pi }{2}}} {\frac{\cos \phi }{{\sin \phi }}} d\beta = - 2\int_{0}^{{\frac{\pi }{2}}} {\frac{1}{{\sqrt {\left( \frac{a}{b} \right)^{2} + \cos^{2} \beta } }}} d\cos \beta \hfill \\ = 2\int_{0}^{1} {\frac{1}{{\sqrt {\left( \frac{a}{b} \right)^{2} + x^{2} } }}} dx = 2\left[ {\ln (x + \sqrt {\left( \frac{a}{b} \right)^{2} + x^{2} } )} \right]_{0}^{1} = 2\ln \frac{b + 1}{a}. \hfill \\ \end{gathered}$$
(50)

So

$$2\int_{0}^{{\frac{\pi }{2}}} {\frac{\cos \phi }{{\sin \phi }}} d\beta = 2\ln \frac{\sin \alpha + 1}{{\cos \alpha }}.$$
(51)

Substitute Eq. (51) into Eq. (47), the formula of \({F}_{c2}\) and \({F}_{n}\) can be obtained:

$$\begin{gathered} F_{{{\text{c}}2}} = \pi N\sin \theta \sin \alpha + \pi S_{1} \cos \theta \sin \alpha - 2N\cos \theta \sin \alpha \ln \frac{\sin \alpha + 1}{{\cos \alpha }} + 2S_{1} \sin \theta \sin \alpha \ln \frac{\sin \alpha + 1}{{\cos \alpha }} \hfill \\ F_{n} = \pi N\sin \theta \cos \alpha + \pi S_{1} \cos \theta \cos \alpha - 2N\cos \theta \cos \alpha \ln \frac{\sin \alpha + 1}{{\cos \alpha }} + 2S_{1} \sin \theta \cos \alpha \ln \frac{\sin \alpha + 1}{{\cos \alpha }}. \hfill \\ \end{gathered}$$
(52)

Appendix B: Derivation of governing equation of thermal stress

In this section, the governing equation of thermal stress, Eq. (19) is derived. Assuming that the temperature distribution inside the material is \(T(x,y,z,t)\), the Hooke's law considering the thermal expansion can be expressed as:

$$\varepsilon_{ij} = \frac{1}{2G}\sigma_{ij} - \frac{v}{E}\Theta \delta_{ij} + \alpha \cdot \Delta T \cdot \delta_{ij} .$$
(53)

where, \(v\) is Poisson’s ratio, \(\alpha\) is the thermal expansion coefficient, \(\Delta T=T\left(x,y,z,t\right)-{T}_{r}\), \({T}_{r}\) is the initial formation temperature, \(G=\frac{E}{\left[2\left(1+v\right)\right]}\), \(={\sigma }_{x}+{\sigma }_{y}+{\sigma }_{z}\)

According to Eq. (53), the equation for stress expressed by strain is:

$$\sigma_{ij} = \lambda e\delta_{ij} + 2G\varepsilon_{ij} - \frac{E}{1 - 2v}\alpha \cdot \Delta T \cdot \delta_{ij} .$$
(54)

where, \(e={\varepsilon }_{x}+{\varepsilon }_{y}+{\varepsilon }_{z}\) is volumetric strain,\(\lambda =Ev/[(1+v)(1-2v)]\).

The thermoelastic equilibrium equation can be expressed as:

$$\sigma_{ij,j} + f_{i} = \rho \ddot{u}_{i} .$$
(55)

where, \(\rho\) is density, \({\ddot{u}}_{i}(i=\mathrm{1,2},3)\) are the acceleration in the \(x\),\(y\), z directions, \({f}_{i}(i=\mathrm{1,2},3)\) are the body forces in the \(x\),\(y\), z directions.

The strain–displacement relationship can be expressed as:

$$\varepsilon_{ij} = \frac{1}{2}\left( {u_{i,j} + u_{j,i} } \right).$$
(56)

The bottom hole rock is assumed to be semi-infinite body. Thus, there is only deformation along the \(Z\)-axis, and no deformation along the \(X\)-axis and \(Y\)- axis, which can be expressed as:

$$w = w\left( {z,t} \right),\quad u = v = 0.$$
(57)

Substitute Eq. (57) into Eq. (56):

$$\varepsilon_{z} = \frac{\partial w}{{\partial z}},\quad \varepsilon_{x} = \varepsilon_{y} = \varepsilon_{xy} = \varepsilon_{yz} = \varepsilon_{zx} = 0.$$
(58)

Substitute Eq. (58) into Eq. (54):

$$\begin{gathered} \sigma_{z} = 2G\left( {\frac{1 - v}{{1 - 2v}}\varepsilon_{z} - \frac{1 + v}{{1 - 2v}}\alpha \cdot \Delta T} \right) \hfill \\ \sigma_{x} = \sigma_{y} = 2G\left( {\frac{v}{1 - 2v}\varepsilon_{z} - \frac{1 + v}{{1 - 2v}}\alpha \cdot \Delta T} \right). \hfill \\ \tau_{xy} = 0,\quad \tau_{yz} = 0,\quad \tau_{zx} = 0 \hfill \\ \end{gathered}$$
(59)

According to Eq. (59), the following equation can be obtained:

$$\varepsilon_{z} = \frac{\partial w}{{\partial z}} = \frac{1}{1 - v}\left[ {\frac{1 - 2v}{{2G}}\sigma_{z} \left( {z,t} \right) + \left( {1 + v} \right)\alpha \cdot \Delta T\left( {z,t} \right)} \right].$$
(60)

According to Eq. (55), the following equation can be obtained by ignoring the body force:

$$\frac{{\partial \sigma_{z} }}{\partial z} = \rho \frac{{\partial^{2} w}}{{\partial t^{2} }}.$$
(61)

Derivative of Eq. (61) with respect to z:

$$\frac{{\partial^{2} \sigma_{z} }}{{\partial z^{2} }} = \rho \frac{\partial }{{\partial {\text{z}}}}\left( {\frac{{\partial^{2} w}}{{\partial t^{2} }}} \right) = \rho \frac{{\partial^{2} }}{{\partial t^{2} }}\left( {\frac{\partial w}{{\partial {\text{z}}}}} \right).$$
(62)

Substitute Eq. (60) into Eq. (62), the governing equation of thermal stress can be expressed:

$$\frac{{\partial^{2} \sigma_{z} }}{{\partial z^{2} }} - \frac{{\rho \left( {1 - 2v} \right)}}{{2G\left( {1 - v} \right)}}\frac{{\partial^{2} \sigma_{z} }}{{\partial t^{2} }} = \frac{{\rho \cdot \alpha \left( {1 + v} \right)}}{1 - v}\frac{{\partial^{2} T}}{{\partial t^{2} }}.$$
(63)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, C., Huang, Z., Shi, H. et al. 3D Cutting Force Model of a Stinger PDC Cutter: Considering Confining Pressure and the Thermal Stress. Rock Mech Rock Eng 54, 5001–5022 (2021). https://doi.org/10.1007/s00603-021-02494-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-021-02494-z

Keywords

Navigation