Skip to main content
Log in

A Unified Constitutive Model for Rock Based on Newly Modified GZZ Criterion

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a unified constitutive model for rock based on the newly modified generalized Zhang-Zhu (GZZ) criterion. The constitutive model adopts a non-associated plastic flow rule and a continuous potential function that takes the three effective principal stresses into account. To reflect strain-softening, strain-hardening, and elastic-perfectly plastic behavior of rock in a unified way, a general expression is proposed to model the post-failure behavior of rock using the deviatoric plastic shear strain as the fundamental variable. The proposed constitutive model has been successfully implemented in a 3D finite-difference code and validated using it to simulate the true triaxial test of two types of rocks and comparing the simulation results with the experimental data. Finally, a 3D numerical model based on the proposed constitutive model is constructed to simulate a highway rock tunnel during construction. The results show that the predicted displacements of the rock tunnel are in good agreement with the field measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(After Clausen and Damkilde 2008)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

E rm :

Young’s modulus of rock mass

\(I_{1}^{*} ,I_{2}^{*} ,I_{3}^{*}\) :

Transformed first, second and third stress invariants

J 2, J 3 :

Second and third deviatoric stress invariants

m b, s, a :

Material constant for rock masses defined in Hoek–Brown criterion

m bi, m br :

Initial and residual value of \({m}_{b}\)

m d :

Material constant defining potential function

m di, m dr :

Initial and residual value of \({m}_{d}\)

m i :

Material constant for the intact rock

\(p^{\prime}\) :

Mean effective stress

s i, s r :

Initial and residual value of \(s\)

\(\varepsilon_{f}\) :

A parameter controlling the softening/hardening of the yield function

\(\varepsilon_{g}\) :

A parameter controlling the evolution of the potential function

\(\varepsilon_{q}^{p}\) :

Plastic deviatoric shear strain

\(\varepsilon_{x} ,\varepsilon_{y} ,\varepsilon_{z} ,\varepsilon_{xy} ,\varepsilon_{xz} ,\varepsilon_{yz}\) :

Six basic strain components

\(\theta_{\sigma }\) :

Lode’s angle

\(\sigma_{1}^{{\prime}} ,\sigma_{2}^{{\prime}} ,\sigma_{3}^{{\prime}}\) :

Maximum, intermediate, and minimum effective principal stresses

\(\sigma_{c}\) :

Unconfined compressive strength of intact rock

\(\sigma_{m,2}^{{\prime}}\) :

Effective mean stress

\(\sigma^{\prime}_{x} ,\sigma^{\prime}_{y} ,\sigma^{\prime}_{z} ,\tau_{xy} ,\tau_{xz} ,\tau_{yz}\) :

Six basic stress components

\(\tau_{{{\text{oct}}}}\) :

Octahedral shear stress

D :

Disturbance factor reflecting the level of blast damage and stress relaxation to rock mass

E, v :

Young’s modulus and Poisson’s ratio

GSI:

Geological strength index

K, G :

Bulk modulus and shear modulus

f, g :

Yield function and potential function

λ :

Plastic multiplier for flow rule

\(\varepsilon\) :

\(\left[ {\varepsilon_{x} ,\varepsilon_{y} ,\varepsilon_{z} ,2\varepsilon_{xy} ,2\varepsilon_{xz} ,2\varepsilon_{yz} } \right]\)

\(\sigma\) :

\(\left[ {\sigma_{x}^{{\prime}} ,\sigma_{y}^{{\prime}} ,\sigma_{z}^{{\prime}} ,\tau_{xy} ,\tau_{xz} ,\tau_{yz} } \right]\)

References

  • ABAQUS Inc. (2015) Abaqus analysis user’s guide. Dassault Systems Simulia Corp, USA

  • Brinkgreve RBJ, Engine E, Swolfs WM (2013) Plaxis 3D user manual. Plaxis bv, NL

  • Cai M, Horii H (1992) A constitutive model of highly jointed rock masses. Mech Mater 13:217–246

    Article  Google Scholar 

  • Cai M, Kaiser PK, Tasaka Y, Minami M (2007) Determination of residual strength parameters of jointed rock masses using the GSI system. Int J Rock Mech Min Sci 44:247–265

    Article  Google Scholar 

  • Chen H, Zhu H, Zhang L (2019) Further modification of a generalized three-dimensional Hoek-Brown criterion. Manuscript submitted for publication

  • Clausen J, Damkilde L (2008) An exact implementation of the Hoek-Brown criterion for elasto-plastic finite element calculations. Int J Rock Mech Min Sci 45(6):831–847

    Article  Google Scholar 

  • Farmer IW (1983) Engineering behaviour of rocks. Chapman & Hall, London

    Book  Google Scholar 

  • Gens A, Carol I, Alonso E (1990) A constitutive model for rock joints formulation and numerical implementation. Comput Geotech 9(1):3–20

    Article  Google Scholar 

  • Gercek H (2007) Poisson’s ratio values for rocks. Int J Rock Mech Min Sci 44:1–13

    Article  Google Scholar 

  • Hoek E (2012) Blast damage factor D. Technical note for RocNews, winter 2012 issue, RocScience, 2 Feb 2012

  • Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Eng ASCE 106:1013–1035

    Google Scholar 

  • Hoek E, Brown ET (1988) The Hoek–Brown criterion—a 1988 update. In: Proc. 15th Can. rock mech. symp., University of Toronto, Canada, pp 31–38

  • Hoek E, Brown ET (2018) The Hoek-Brown failure criterion and GSI—2018 edition. J Rock Mech Geotech Eng 11:445–463

    Article  Google Scholar 

  • Hoek E, Diederichs MS (2006) Empirical estimation of rock mass modulus. Int J Rock Mech Min Sci 43(2):203–215

    Article  Google Scholar 

  • Hoek E, Wood D, Shan S (1992) A modified Hoek–Brown criterion for jointed rock masses. In: Proceedings of the international ISRM symposium on rock characterization, Chester, UK, pp 209–214

  • Hoek E, Carranza-Torres C, Corkum B (2002) Hoek–Brown failure criterion—2002 edition. In: Hammah R et al (eds) Proc. 5th North American rock mech. symp. and 17th tunneling assoc. of Canada conf.: NARMS-TAC 2002. Min Innov Tech, Toronto, pp 267–273

  • Hudson JA, Harrison JP (1997) Rock engineering mechanics—an introduction to the principles. Elsevier, Oxford

    Google Scholar 

  • Itasca Consulting Group Inc. (2017) Constitutive models. FLAC3D version 6.0, user’s manual

  • Jiang H, Wang XW, Xie YL (2011) New strength criteria for rocks under polyaxial compression. Can Geotech J 48:1233–1245

    Article  Google Scholar 

  • Krieg RD, Krieg DB (1977) Accuracies of numerical solution methods for the elastic-perfectly plastic model. ASME J Press Vessel Technol 99:510–515

    Article  Google Scholar 

  • LSTC (Livermore Software Technology Corporation) (2017) LS-DYNA keyword user’s manual volume I—III. Livermore, CA

  • Mogi K (1971) Fracture and flow of rocks under high triaxial compression. J Geophys Res 76(5):1255–1269

    Article  Google Scholar 

  • Owen DJR, Hinton E (1980) Finite elements in plasticity: theory and practice. Pineridge Press Limited, Swansea

    Google Scholar 

  • Pan XD, Hudson JA (1988) A simplified three dimensional Hoek-Brown yield criterion. In: Romana M (ed) Rock mechanics and power plants. Balkema, Rotterdam, pp 95–103

    Google Scholar 

  • Priest SD (2005) Determination of shear strength and three-dimensional yield strength for the Hoek-Brown yield criterion. Rock Mech Rock Eng 38(4):299–327

    Article  Google Scholar 

  • Priest SD (2012) Three-dimensional failure criteria based on the Hoek-Brown criterion. Rock Mech Rock Eng 45:989–993

    Article  Google Scholar 

  • Singh B (1973) Continuum characterization of jointed rock masses. Part 1—the constitutive equations. Int J Rock Mech Min Sci Geomech Abstr 22(4):197–213

    Google Scholar 

  • Sitharam TG, Shimizu N, Sridevi J (2001) Practical equivalent continuum characterization of jointed rock masses. Int J Rock Mech Min Sci 38(3):437–448

    Article  Google Scholar 

  • Sonmez H, Ulusay R (1999) Modification to the geological strength index (GSI) and their applicability to stability of slopes. Int J Rock Mech Min Sci 36:743–760

    Article  Google Scholar 

  • Walton G, Arzua J, Alejano LR, Diederichs MS (2014) A laboratory-testing-based study on the strength, deformability, and dilatancy of carbonate rocks at low confinement. Rock Mech Rock Eng 48(3):941–958

    Article  Google Scholar 

  • Walton G, Hedayat A, Kim E, Labrie D (2017) Post-yield strength and dilatancy evolution across the brittle-ductile transition in Indiana limestone. Rock Mech Rock Eng 50(7):1691–1710

    Article  Google Scholar 

  • Wu S, Zhang S, Zhang G (2018) Three-dimensional strength estimation of intact rocks using a modified Hoek-Brown criterion based on a new deviatoric function. Int J Rock Mech Min Sci 107:181–190

    Article  Google Scholar 

  • Zandarin MT, Alonso E, Olivella S (2013) A constitutive law for rock joints considering the effects of suction and roughness on strength parameters. Int J Rock Mech Min Sci 60:333–344

    Article  Google Scholar 

  • Zhang L (2008) A generalized three-dimensional Hoek-Brown strength criterion. Rock Mech Rock Eng 41:893–915

    Article  Google Scholar 

  • Zhang L (2016) Engineering properties of rocks. Elsevier Ltd, Amsterdam

    Google Scholar 

  • Zhang L, Zhu H (2007) Three-dimensional Hoek-Brown strength criterion for rocks. J Geotech Geoenviron Eng ASCE 133(9):1128–1135

    Article  Google Scholar 

  • Zhang Q, Zhu H, Zhang L (2013) Modification of a generalized three-dimensional Hoek-Brown strength criterion. Int J Rock Mech Min Sci 59:80–96

    Article  Google Scholar 

  • Zhang Y, Feng XT, Yang CX et al (2019) Fracturing evolution analysis of Beishan granite under true triaxial compression based on acoustic emission and strain energy. Int J Rock Mech Min Sci 117:150–161

    Article  Google Scholar 

  • Zhao XG, Cai M (2010) A mobilized dilation angle model for rocks. Int J Rock Mech Min Sci 47(3):368–384

    Article  Google Scholar 

  • Zhu H, Zhang Q, Huang B, Zhang L (2017) A constitutive model based on the modified generalized three-dimensional Hoek-Brown strength criterion. Int J Rock Mech Min Sci 98:78–87

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianyang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhu, H. & Zhang, L. A Unified Constitutive Model for Rock Based on Newly Modified GZZ Criterion. Rock Mech Rock Eng 54, 921–935 (2021). https://doi.org/10.1007/s00603-020-02293-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-020-02293-y

Keywords

Navigation