Skip to main content
Log in

An Experimental and Numerical Study on the Influence of Filling Materials on Double-Crack Propagation

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Filling materials such as clay or sand widely exist in natural rock joints and work as weak bonds between the joint surfaces. The fillings affect rock deformation and failure behavior, and show different influences in terms of single crack or multiple cracks. While most of the literature have focused on unfilled cracks in brittle materials, this study aims to investigate various filling materials on the crack behavior, e.g., initiation, secondary cracks and peak strength. In this paper, the crack propagation in rock-like specimens with double-filled and unfilled cracks are investigated experimentally and numerically. Uniaxial compression tests were conducted and the experimental observations indicate that the peak stress and first crack initiation stress of the specimens vary with different geometries and different filling materials, while the crack initiation location and the pattern of crack coalescence show similar behavior between filled and unfilled cracks. In parallel to the experimental tests, numerical simulations were carried out using a modified phase field model (PFM) to complement the experiments and provide a new perspective. The PFM is found to produce consistent stress–strain curve, strength, and crack patterns with those observed in the experimental tests for both unfilled and filled cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\(\alpha \) :

Inclination angle of original crack

\({\varvec{b}}\) :

Body force

E :

Young’s modulus

\({\varvec{\varepsilon }}_+\) :

Tensile strain

\(G_\mathrm{c}\) :

Critical energy release rate

\(G_\mathrm{cII}\) :

Critical energy release rate of mode II

\(H_\mathrm{u}\) :

Driving force of phase field

\(\lambda \) :

First Lamé constant

L1:

Original crack length

\(\mu \) :

Shear modulus

\(\phi \) :

Phase field

\(\psi _\mathrm{ts}\) :

Energy contribution of tensile strains to mode II crack

\(\varphi \) :

Internal friction angle

\({\varvec{u}}\) :

Displacement field

\(\beta \) :

Rock bridge angle

c :

Cohesion

\({\varvec{\varepsilon }}\) :

Strain tensor

\({\varvec{\varepsilon }}_-\) :

Compressive strain

\(G_\mathrm{cI}\) :

Critical energy release rate of mode I

h :

Maximum element size

k :

Stability parameter

\(l_0\) :

Length scale parameter

L2:

Rock bridge length

\(\nu \) :

Poisson’s ratio

\(\psi _\mathrm{t}\) :

Energy contribution due to positive volumetric strain

\(\psi _\mathrm{cs}\) :

Energy contribution of compressive strains to mode II crack

\({\varvec{\sigma }}\) :

Stress tensor

\({\varvec{x}}\) :

Position vector

References

  • Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383–405

    Google Scholar 

  • Amor H, Marigo J-J, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. J Mech Phys Solids 57(8):1209–1229

    Google Scholar 

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620

    Google Scholar 

  • Bilgen C, Weinberg K (2019) On the crack-driving force of phase-field models in linearized and finite elasticity. Comput Methods Appl Mech Eng 353:348–372

    Google Scholar 

  • Bobet A, Einstein H (1998a) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7):863–888

    Google Scholar 

  • Bobet A, Einstein HH (1998b) Numerical modeling of fracture coalescence in a model rock material. Int J Fract 92(3):221

    Google Scholar 

  • Borden MJ, Verhoosel CV, Scott MA, Hughes TJ, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    Google Scholar 

  • Bouchard P-O, Bay F, Chastel Y, Tovena I (2000) Crack propagation modelling using an advanced remeshing technique. Comput Methods Appl Mech Eng 189(3):723–742

    Google Scholar 

  • Bourdin B, Francfort GA, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826

    Google Scholar 

  • Bourdin B, Francfort GA, Marigo J-J (2008) The variational approach to fracture. J Elast 91(1–3):5–148

    Google Scholar 

  • Brace W, Bombolakis E (1963) A note on brittle crack growth in compression. J Geophys Res 68(12):3709–3713

    Google Scholar 

  • Bryant EC, Sun W (2018) A mixed-mode phase field fracture model in anisotropic rocks with consistent kinematics. Comput Methods Appl Mech Eng 342:561–584

    Google Scholar 

  • Cheng Z, Wang Z, Luo Z (2019) Dynamic fracture analysis for shale material by peridynamic modelling. Comput Model Eng Sci 118(3):509–527

    Google Scholar 

  • Clayton JD (2019) Computational modeling of dual-phase ceramics with finsler-geometric phase field mechanics. Comput Model Eng Sci 120(2):333–350

    Google Scholar 

  • Cook NG (1965) The failure of rock. Int J Rock Mech Min Sci Geomech Abstr 2:389–403

    Google Scholar 

  • Deb D, Das KC (2009) Extended finite element method (xfem) for analysis of cohesive rock joint. J Sci Indus Res 68:575–583

    Google Scholar 

  • Donze F, Bouchez J, Magnier S (1997) Modeling fractures in rock blasting. Int J Rock Mech Min Sci 34(8):1153–1163

    Google Scholar 

  • Fakhimi A, Gharahbagh EA (2011) Discrete element analysis of the effect of pore size and pore distribution on the mechanical behavior of rock. Int J Rock Mech Min Sci 48(1):77–85

    Google Scholar 

  • Feng D-C, Wu J-Y (2018) Phase-field regularized cohesive zone model (czm) and size effect of concrete. Eng Fract Mech 197:66–79

    Google Scholar 

  • Fowell R, Hudson J, Xu C, Zhao X et al (1995) Suggested method for determining mode i fracture toughness using cracked chevron notched brazilian disc (ccnbd) specimens. Int J Rock Mech Min Sci Geomech Abstr 7:322A

    Google Scholar 

  • Hoek E, Bieniawski Z (1965) Brittle fracture propagation in rock under compression. Int J Fract Mech 1(3):137–155

    Google Scholar 

  • Hosseini-Tehrani P, Hosseini-Godarzi A, Tavangar M (2005) Boundary element analysis of stress intensity factor ki in some two-dimensional dynamic thermoelastic problems. Eng Anal Bound Elem 29(3):232–240

    Google Scholar 

  • Lajtai E (1974) Brittle fracture in compression. Int J Fract 10(4):525–536

    Google Scholar 

  • Li H, Wong LNY (2012) Influence of flaw inclination angle and loading condition on crack initiation and propagation. Int J Solids Struct 49(18):2482–2499

    Google Scholar 

  • Li Q, Li Z, Xu X (2020) Experimental study for the effect of fillings on properties of brittle rock containing two parallel flaws. Geotech Geol Eng 38:3643–3651

    Google Scholar 

  • Liu Z, Menouillard T, Belytschko T (2011) An xfem/spectral element method for dynamic crack propagation. Int J Fract 169(2):183–198

    Google Scholar 

  • Lu X, Wu W-L (2006) A subregion drbem formulation for the dynamic analysis of two-dimensional cracks. Math Comput Modell 43(1–2):76–88

    Google Scholar 

  • Meng F, Zhou H, Wang Z, Zhang L, Kong L, Li S, Zhang C (2017) Influences of shear history and infilling on the mechanical characteristics and acoustic emissions of joints. Rock Mech Rock Eng 50(8):2039–2057

    Google Scholar 

  • Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778

    Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Google Scholar 

  • Mughieda O, Alzo’ubi AK (2004) Fracture mechanisms of offset rock joints-a laboratory investigation. Geotech Geol Eng 22(4):545–562

    Google Scholar 

  • Nikravesh S, Gerstle W (2018) Improved state-based peridynamic lattice model including elasticity, plasticity and damage. Comput Model Eng Sci 116(3):323–347

    Google Scholar 

  • Palmström A, Sharma V, Saxena K (2001) In-situ characterization of rocks. A.A. Balkema Publishers, Tokyo, pp 1–40

    Google Scholar 

  • Park C, Bobet A (2009) Crack coalescence in specimens with open and closed flaws: a comparison. Int J Rock Mech Min Sci 46(5):819–829

    Google Scholar 

  • Pereira JP (1997) Rolling friction and shear behaviour of rock discontinuities filled with sand. Int J Rock Mech Min Sci 34(3–4):244–e1

    Google Scholar 

  • Shahani A, Fasakhodi MA (2009) Finite element analysis of dynamic crack propagation using remeshing technique. Mater Des 30(4):1032–1041

    Google Scholar 

  • Shen B, Stephansson O (1993) Numerical analysis of mixed mode i and mode ii fracture propagation. Int J Rock Mech Min Sci Geomech Abstr 30:861–867

    Google Scholar 

  • Shen B, Stephansson O (1994) Modification of the g-criterion for crack propagation subjected to compression. Eng Fract Mech 47(2):177–189

    Google Scholar 

  • Shen B, Stephansson O, Einstein HH, Ghahreman B (1995) Coalescence of fractures under shear stresses in experiments. J Geophys Res Solid Earth 100(B4):5975–5990

    Google Scholar 

  • Talamini B, Mao Y, Anand L (2018) Progressive damage and rupture in polymers. J Mech Phys Solids 111:434–457

    Google Scholar 

  • Trädegård A, Nilsson F, Östlund S (1998) Fem-remeshing technique applied to crack growth problems. Comput Methods Appl Mech Eng 160(1–2):115–131

    Google Scholar 

  • Wen P, Aliabadi M, Rooke D (1998) Cracks in three dimensions: a dynamic dual boundary element analysis. Comput Methods Appl Mech Eng 167(1–2):139–151

    Google Scholar 

  • Wong L, Einstein H (2009) Crack coalescence in molded gypsum and carrara marble: part 1. macroscopic observations and interpretation. Rock Mech Rock Eng 42(3):475–511

    Google Scholar 

  • Wong R, Chau K, Tang C, Lin P (2001) Analysis of crack coalescence in rock-like materials containing three flaws part i: experimental approach. Int J Rock Mech Min Sci 38(7):909–924

    Google Scholar 

  • Wong RH, Chau K (1998) Crack coalescence in a rock-like material containing two cracks. Int J Rock Mech Min Sci 35(2):147–164

    Google Scholar 

  • Wu J-Y (2017) A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J Mech Phys Solids 103:72–99

    Google Scholar 

  • Wu Z, Wong LNY (2012) Frictional crack initiation and propagation analysis using the numerical manifold method. Comput Geotech 39:38–53

    Google Scholar 

  • Yang S, Yang D, Jing H, Li Y, Wang S (2012) An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures. Rock Mech Rock Eng 45(4):563–582

    Google Scholar 

  • Yang S-Q (2011) Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure. Eng Fract Mech 78(17):3059–3081

    Google Scholar 

  • Yin P, Wong R, Chau K (2014) Coalescence of two parallel pre-existing surface cracks in granite. Int J Rock Mech Min Sci 68:66–84

    Google Scholar 

  • Yonghong Z (2004) Mini-crack development from a cemented fracture in marble specimen under uniaxial compression. Chin J Rock Mech Eng 23:2504–2509

    Google Scholar 

  • Yu Y, Xia P, Yang C (2018) Form finding and collapse analysis of cable nets under dynamic loads based on finite particle method. Comput Model Sci 117(1):73–89

    Google Scholar 

  • Zhang H, Li L, An X, Ma G (2010) Numerical analysis of 2-d crack propagation problems using the numerical manifold method. Eng Anal Bound Elem 34(1):41–50

    Google Scholar 

  • Zhang B, Li S-C, Zhang D-F, Li M-T, Shao D-L (2012) Uniaxial compression mechanical property test, fracture and damage analysis of similar material of jointed rock mass with filled cracks. Rock Soil Mech 33(6):1647–1652

    Google Scholar 

  • Zhang X-P, Wong LNY (2012) Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach. Rock Mech Rock Eng 45(5):711–737

    Google Scholar 

  • Zhang X, Sloan SW, Vignes C, Sheng D (2017) A modification of the phase-field model for mixed mode crack propagation in rock-like materials. Comput Methods Appl Mech Eng 322:123–136

    Google Scholar 

  • Zhou S, Zhuang X, Rabczuk T (2018a) A phase-field modeling approach of fracture propagation in poroelastic media. Eng Geol 240:189–203

    Google Scholar 

  • Zhou S, Zhuang X, Zhu H, Rabczuk T (2018b) Phase field modelling of crack propagation, branching and coalescence in rocks. Theoret Appl Fract Mech 96:174–192

    Google Scholar 

  • Zhou S, Zhuang X, Rabczuk T (2019) Phase field modeling of brittle compressive-shear fractures in rock-like materials: A new driving force and a hybrid formulation. Comput Methods Appl Mech Eng 355:729–752

    Google Scholar 

  • Zhu H, Wang Q, Zhuang X (2016) A nonlinear semi-concurrent multiscale method for fractures. Int J Impact Eng 87:65–82

    Google Scholar 

  • Zhuang X, Chun J, Zhu H (2014a) A comparative study on unfilled and filled crack propagation for rock-like brittle material. Theoret Appl Fract Mech 72:110–120

    Google Scholar 

  • Zhuang X, Zhu H, Augarde C (2014b) An improved meshless shepard and least squares method possessing the delta property and requiring no singular weight function. Comput Mech 53(2):343–357

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support provided by Deutsche Forschungsgemeinschaft (DFG ZH 459/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Zhuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Finite Element Discretization

Appendix: Finite Element Discretization

Introducing virtual functions, we convert the governing equations of strong form for the phase field modeling to the weak form as

$$\begin{aligned} \int _{\Omega }\left( -{\varvec{\sigma }}:\delta {\varvec{\varepsilon }}\right) \mathrm {d}\Omega +\int _{\Omega }{\varvec{b}} \cdot \delta {\varvec{u}} \mathrm {d}\Omega +\int _{\Omega _{t}}{\varvec{t}} \cdot \delta {\varvec{u}} \mathrm {d}S=0, \end{aligned}$$
(19)

and

$$\begin{aligned} \int _{\Omega }-2(1-k)H_\mathrm{u}(1-\phi )\delta \phi \mathrm {d}\Omega +\int _{\Omega } G_\mathrm{c}\left( l_0\nabla \phi \cdot \nabla \delta \phi +\frac{1}{l_0}\phi \delta \phi \right) \mathrm {d}\Omega =0. \end{aligned}$$
(20)

Meanwhile, the standard vector-matrix notation is applied in the finite element discretization; therefore, the displacement field and phase field are approximated as

$$\begin{aligned} {\varvec{u}} = {\varvec{N}}_u {\varvec{d}},\;\; \phi = {\varvec{N}}_{\phi } \hat{{\varvec{\phi }}}, \end{aligned}$$
(21)

where \({\varvec{d}}\) and \(\hat{{\varvec{\phi }}}\) are the vectors composed of the node values of the displacement field and phase field. \({\varvec{N}}_\mathrm{u}\) and \({\varvec{N}}_{\phi }\) are shape function matrices and in 2D they are defined as

$$\begin{aligned} {\varvec{N}}_\mathrm{u} = \left[ \begin{array}{ccccc} N_{1}&{}0&{}\dots &{}N_{n}&{}0\\ 0&{}N_{1}&{}\dots &{}0&{}N_{n} \end{array}\right] , \;\; {\varvec{N}}_\phi = \left[ \begin{array}{cccc} N_{1}&N_{2}&\dots&N_{n}, \end{array}\right] \end{aligned}$$
(22)

where n denotes the node number in an element and \(N_i\) is the shape function related to node i. The test functions are approximated as

$$\begin{aligned} \delta {\varvec{u}} = {\varvec{N}}_u \delta {\varvec{d}},\;\; \delta \phi = {\varvec{N}}_{\phi } \delta \hat{{\varvec{\phi }}}, \end{aligned}$$
(23)

where \(\delta {\varvec{d}}\) and \(\delta \hat{{\varvec{\phi }}}\) compose the node values of the test functions.

Afterwards, the gradients of the unknowns and test functions are defined as

$$\begin{aligned} {\varvec{\varepsilon }} = {\varvec{B}}_\mathrm{u} {\varvec{d}},\;\; \nabla \phi = {\varvec{B}}_\phi \hat{{\varvec{\phi }}}, \;\;{\varvec{\delta }} \varepsilon = {\varvec{B}}_\mathrm{u} \delta {\varvec{d}},\;\; \nabla \phi = {\varvec{B}}_\phi \delta \hat{{\varvec{\phi }}}, \end{aligned}$$
(24)

where \({\varvec{B}}_u\) and \({\varvec{B}}_\phi \) are defined based on the derivatives of the shape function:

$$\begin{aligned} {\varvec{B}}_\mathrm{u}=\left[ \begin{array}{ccccc} N_{1,x}&{}0&{}\dots &{}N_{n,x}&{}0\\ 0&{}N_{1,y}&{}\dots &{}0&{}N_{n,y}\\ N_{1,y}&{}N_{1,x}&{}\dots &{}N_{n,y}&{}N_{n,x} \end{array}\right] ,\; {\varvec{B}}_\phi =\left[ \begin{array}{cccc} N_{1,x}&{}N_{2,x}&{}\dots &{}N_{n,x}\\ N_{1,y}&{}N_{2,y}&{}\dots &{}N_{n,y}. \end{array}\right] \end{aligned}$$
(25)

The equations of weak form (19) and (20) are then converted to

$$\begin{aligned}&-(\delta {\varvec{d}})^\mathrm {T} \left[ \int _{\Omega } {\varvec{B}}_\mathrm{u}^\mathrm {T} {\varvec{D}}_\mathrm{e} {\varvec{B}}_\mathrm{u} \mathrm {d}\Omega {\varvec{d}} \right] + (\delta {\varvec{d}})^\mathrm {T} \left[ \int _{\Omega }{\varvec{N}}_u^\mathrm {T}{\varvec{b}} \mathrm {d}\Omega +\int _{\Omega _{h}} {\varvec{N}}_u^\mathrm {T} {\varvec{t}}\mathrm {d}S \right] =0, \end{aligned}$$
(26)
$$\begin{aligned}&-(\delta \hat{{\varvec{\phi }}})^{\mathrm {T}} \int _{\Omega }\left\{ {\varvec{B}}_\phi ^{\mathrm {T}} G_\mathrm{c} l_0 {\varvec{B}}_\phi +{\varvec{N}}_\phi ^{\mathrm {T}} \left[ \frac{G_\mathrm{c}}{l_0} + 2(1-k)H_u \right] {\varvec{N}}_\phi \right\} \mathrm {d}\Omega \hat{{\varvec{\phi }}}+ (\delta \hat{{\varvec{\phi }}})^\mathrm {T} \int _{\Omega }2(1-k)H_u{\varvec{N}}_\phi ^{\mathrm {T}} \mathrm {d}\Omega = 0. \end{aligned}$$
(27)

For arbitrary admissible test functions, one always has Eqs. (26) and (27), which leads to the discrete equations of weak form as follows:

$$\begin{aligned}&-\underbrace{\int _{\Omega } {\varvec{B}}_\mathrm{u}^\mathrm {T} {\varvec{D}}_\mathrm{e} {\varvec{B}}_\mathrm{u} \mathrm {d}\Omega {\varvec{d}}}_{{\varvec{F}}_\mathrm{u}^{int}={\varvec{K}}_\mathrm{u} {\varvec{d}}} + \underbrace{\int _{\Omega }{\varvec{N}}_\mathrm{u}^\mathrm {T}{\varvec{b}} \mathrm {d}\Omega +\int _{\Omega _\mathrm{t}} {\varvec{N}}_u^\mathrm {T} {\varvec{t}}\mathrm {d}S}_{{\varvec{F}}_\mathrm{u}^{ext}}=0, \end{aligned}$$
(28)
$$\begin{aligned}&-\underbrace{ \int _{\Omega }\left\{ {\varvec{B}}_\phi ^{\mathrm {T}} G_\mathrm{c} l_0 {\varvec{B}}_\phi +{\varvec{N}}_\phi ^{\mathrm {T}} \left[ \frac{G_\mathrm{c}}{l_0} + 2(1-k)H_\mathrm{u} \right] {\varvec{N}}_\phi \right\} \mathrm {d}\Omega \hat{{\varvec{\phi }}}}_{{\varvec{F}}_\phi ^{int}={\varvec{K}}_\phi \hat{{\varvec{\phi }}}}+ \underbrace{\int _{\Omega }2(1-k)H_\mathrm{u}{\varvec{N}}_\phi ^{\mathrm {T}} \mathrm {d}\Omega }_{{\varvec{F}}_\phi ^{ext}} = 0, \end{aligned}$$
(29)

where \({\varvec{F}}_\mathrm{u}^\mathrm{int}\) and \({\varvec{F}}_\mathrm{u}^{ext}\) are the internal and external forces for the displacement field; \({\varvec{F}}_\phi ^\mathrm{int}\) and \({\varvec{F}}_\phi ^\mathrm{ext}\) are the internal and external force terms for the phase field (Zhou et al. 2018b). In addition, the stiffness matrices for the displacement and phase fields are obtained through

$$\begin{aligned} \left\{ \begin{aligned}{\varvec{K}}_\mathrm{u}&= \int _{\Omega } {\varvec{B}}_\mathrm{u}^\mathrm {T} {\varvec{D}}_\mathrm{e} {\varvec{B}}_\mathrm{u} \mathrm {d}\Omega \\ {\varvec{K}}_\phi&= \int _{\Omega }\left\{ {\varvec{B}}_\phi ^{\mathrm {T}} G_\mathrm{c} l_0 {\varvec{B}}_\phi +{\varvec{N}}_\phi ^{\mathrm {T}} \left[ \frac{G_\mathrm{c}}{l_0} + 2(1-k)H_u \right] {\varvec{N}}_\phi \right\} \mathrm {d}\Omega , \end{aligned}\right. \end{aligned}$$
(30)

where \({\varvec{D}}_\mathrm{e}\) is the degraded elasticity matrix according to the degradation function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, X., Zhou, S. An Experimental and Numerical Study on the Influence of Filling Materials on Double-Crack Propagation. Rock Mech Rock Eng 53, 5571–5591 (2020). https://doi.org/10.1007/s00603-020-02220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-020-02220-1

Keywords

Navigation