Skip to main content
Log in

A Semi-empirical Failure Criterion for Brittle Rocks

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

\(\varvec{\delta }\) :

Second-order symmetric unit tensor

\({\mathbb {I}}\) :

Fourth-order symmetric unit tensor

\({\mathbb {C}}^{\mathrm{m}}\) :

Isotropic elasticity tensor of the matrix phase

\(E^{\mathrm{m}}\) :

Young’s modulus of the matrix phase

\(\nu ^{\mathrm{m}}\) :

Poisson’s ratio of the matrix phase

\(k^{\mathrm{m}}\) :

Bulk modulus of the matrix phase

\(\mu ^{\mathrm{m}}\) :

Shear modulus of the matrix phase

\(\varvec{\sigma }\) :

Macroscopic stress tensor

\(\varvec{\varepsilon }\) :

Macroscopic strain tensor

\(\varvec{\varepsilon }^{\mathrm{p}}\) :

Total plastic strain induced by microcracks

\(\varvec{\sigma }^{\mathrm{p}}\) :

Thermodynamic force associated with \(\varvec{\varepsilon }^{\mathrm{p}}\)

d :

Isotropic internal damage variable

\(\alpha \) :

Generalized friction coefficient

\({\mathcal {R}}(d)\) :

Material resistance to damage evolution

\(d_{\mathrm{c}}\) :

Critical damage corresponding to material failure

\(r_{\mathrm{c}}\) :

Maximum damage resistance

b :

Kinetic parameter involved in failure functions

\(\sigma _{\mathrm{t}}\) :

Uniaxial tensile strength

\(\sigma _{\mathrm{c}}\) :

Uniaxial compressive strength

\(\sigma _{\mathrm{s}}\) :

Intersection with the \(\sigma _3\)-axis

References

  • Ashby MF, Sammis CG (1990) The damage mechanics of brittle solids in compression. Pure Appl Geophys 133:489–521

    Article  Google Scholar 

  • Barton N (1976) The shear strength of rock and rock joints. Int J Rock Mech Min Sci 13:255–279

    Article  Google Scholar 

  • Chen L, Liu JF, Wang CP, Liu J, Su R, Wang J (2014) Characterization of damage evolution in granite under compressive stress condition and its effect on permeability. Int J Rock Mech Min Sci 71:340–349

    Article  Google Scholar 

  • Drucker DC, Prager W (1952) Soil mechanics and plastic analysis or limit design. Q Appl Math 10:157–165

    Article  Google Scholar 

  • Griffith AA (1920) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond (Ser A) 221:163–198

    Google Scholar 

  • Haimson B, Chang C (2000) A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of westerly granite. Int J Rock Mech Min Sci 37:285–296

    Article  Google Scholar 

  • Hoek E, Martin CD (2014) Fracture initiation and propagation in intact rock: a review. J Rock Mech Geotech Eng 6:287–300

    Article  Google Scholar 

  • Hoek E, Brown E T (1980) Underground excavation in rock. Institute of Mining and Metallurgy

  • Hopkins T W (1986) Microfracturing in westerly granite experimentally extended wet and dry at temperatures to 800\(^\circ C\) and pressures to 200MPa. Ph.D. thesis, Texas A&M University

  • Liu JF, Chen L, Wang CP, Man K, Wang L, Wang J, Su R (2014) Characterizing the mechanical tensile behavior of beishan granite with different experimental methods. Int J Rock Mech Min Sci 69:50–58

    Article  Google Scholar 

  • Martin CD, Chandler N (1994) The progressive fracture of lac du bonnet granite. Int J Rock Mech Min Sci 31:643–659

    Article  Google Scholar 

  • Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574

    Article  Google Scholar 

  • Shen JY, Wan L, Zuo JP (2019) Non-linear shear strength model for coal rocks. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-019-01775-y

    Article  Google Scholar 

  • Singh M, Singh B (2005) A strength criterion based on critical state mechanics for intact rocks. Rock Mech Rock Eng 38:243–248

    Article  Google Scholar 

  • Singh M, Raj A, Singh B (2011) Modified Mohr? Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks. Int J Rock Mech Min Sci 48:546–555

    Article  Google Scholar 

  • Tkalich D, Fourmeau M, Kane A, Li CC, Cailletaud G (2016) Experimental and numerical study of kuru granite under confined compression and indentation. Int J Rock Mech Min Sci 87:55–68

    Article  Google Scholar 

  • Wang W, Shen JY (2017) Comparison of existing methods and a new tensile strength based model in estimating the Hoek–Brown constant, mi, for intact rocks. Eng Geol 224:87–96

    Article  Google Scholar 

  • Zhang LY, Zhu HH (2007) Three-dimensional Hoek–Brown strength criterion for rocks. J Geotech Geoenviron Eng ASCE 133:1128–1135

    Article  Google Scholar 

  • Zhu QZ (2016) Strength prediction of dry and saturated brittle rocks by unilateral damage-friction coupling analyses. Comput Geotech 73:16–23

    Article  Google Scholar 

  • Zhu QZ (2017) A new rock strength criterion from microcracking mechanisms which provides theoretical evidence of hybrid failure. Rock Mech Rock Eng 50:341–352

    Article  Google Scholar 

  • Zhu QZ, Shao JF (2015) A refined micromechanical damage-friction model with strength prediction for rock-like materials under compression. Int J Solids Struct 60–61:75–83

    Article  Google Scholar 

  • Zhu QZ, Shao JF (2017) Micromechanics of rock damage: advances in the quasi-brittle field. J Rock Mech Geotech Eng 9:29–40

    Article  Google Scholar 

  • Zhu QZ, Kondo D, Shao JF (2008) Micromechanical analysis of coupling between anisotropic damage and friction in quasi brittle materials: role of the homogenization scheme. Int J Soids Struct 45(5):1385–1405

    Article  Google Scholar 

  • Zhu QZ, Shao JF, Kondo D (2011) A micromechanics-based thermodynamic formulation of isotropic damage with unilateral and friction effects. Eur J Mech A Solid 30:316–325

    Article  Google Scholar 

  • Zhu QZ, Zhao LY, Shao JF (2016) Analytical and numerical analysis of frictional damage in quasi brittle materials. J Mech Phys Solids 92:137–163

    Article  Google Scholar 

Download references

Funding

Funding was provided by National Key Research and Development Program of China (2017YFC1501100), National Natural Science Foundation of China (51679068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Zhi Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, QZ., Shao, JF. A Semi-empirical Failure Criterion for Brittle Rocks. Rock Mech Rock Eng 53, 4271–4277 (2020). https://doi.org/10.1007/s00603-020-02125-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-020-02125-z

Keywords

Navigation