Skip to main content
Log in

Non-linear Shear Strength Model for Coal Rocks

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

c (MPa):

Cohesion

ϕ (°):

Angle of friction

σ 1 (MPa):

The maximum principal stress

σ 3 (MPa):

The minimum principal stress or confining stress

σ 3max (MPa):

Maximum confining stress

σ ci (MPa):

Uniaxial compressive strength (UCS)

σ ci_fitted (MPa):

Fitted UCS

a :

Fitting parameter

b :

Fitting parameter

m :

Fitting parameter

n :

Fitting parameter

k :

Intermediate auxiliary parameter

AAREP:

Absolute average relative error percentage

N :

Number of tests

RE:

Relative error

R 2 :

Correlation coefficient

References

  • Alejano L, Bobet A (2012) Drucker–Prager criterion. Rock Mech Rock Eng 45(6):995–999

    Article  Google Scholar 

  • Armaghani D, Hajihassani M, Bejarbaneh B, Marto A, Mohamad E (2014) Indirect measure of shale shear strength parameters by means of rock index tests through an optimized artificial neural network. Measurement 55(9):487–498

    Article  Google Scholar 

  • Balmer G (1952) A general analytical solution for Mohr’s envelope. Am Soc Test Mater 52:1269–1271

    Google Scholar 

  • Beyhan S (2008) The determination of G.L.I and E.L.I marl rock material properties depending on triaxial compressive strength. PhD thesis, Osman Gazi University, p 224

  • Cai M (2010) Practical estimates of tensile strength and Hoek–Brown parameter m i of brittle rocks. Rock Mech Rock Eng 43(2):167–184

    Article  Google Scholar 

  • Chang C, Haimson B (2012) A failure criterion for rocks based on true triaxial testing. Rock Mech Rock Eng 45(6):1007–1010

    Article  Google Scholar 

  • Chawre B (2018) Correlations between ultrasonic pulse wave velocities and rock properties of quartz-mica schist. J Rock Mech Geotech Eng 10(3):594–602

    Article  Google Scholar 

  • Da Fontoura SAB (2012) Lade and modified Lade 3D rock strength criteria. Rock Mech Rock Eng 45(6):1001–1006

    Article  Google Scholar 

  • Eberhardt E (2012) The Hoek–Brown failure criterion. Rock Mech Rock Eng 45(6):981–988

    Article  Google Scholar 

  • Farah R (2011) Correlations between index properties and unconfined compressive strength of weathered Ocala Limestone. MSc thesis, University of North Florida School of Engineering, p 83

  • Jimenez R, Serrano A, Olalla C (2008) Linearization of the Hoek and Brown rock failure criterion for tunnelling in elasto-plastic rock masses. Int J Rock Mech Min Sci 45(7):1153–1163

    Article  Google Scholar 

  • Karakus M, Tutmez B (2006) Fuzzy and multiple regression modelling for evaluation of intact rock strength based on point load, schmidt hammer and sonic velocity. Rock Mech Rock Eng 39:45–57

    Article  Google Scholar 

  • Karakus M, Kumral M, Kilic O (2005) Predicting elastic properties of intact rocks from index tests using multiple regression modeling. Int J Rock Mech Min Sci 42:323–330

    Article  Google Scholar 

  • Karaman K, Cihangir F, Ercikdi B, Kesimal A, Demirel S (2015) Utilization of the brazilian test for estimating the uniaxial compressive strength and shear strength parameters. J S Afr Inst Min Metall 115:185–192

    Article  Google Scholar 

  • Labuz J, Zang A (2012) Mohr–Coulomb failure criterion. Rock Mech Rock Eng 45(6):975–979

    Article  Google Scholar 

  • Medhurst TP, Brown ET (1998) A study of the mechanical behaviour of coal for pillar design. Int J Rock Mech Min Sci 35(8):1087–1105

    Article  Google Scholar 

  • Nourani M, Moghadder M, Safari M (2017) Classification and assessment of rock mass parameters in choghart iron mine using p-wave velocity. J Rock Mech Geotech Eng 9(2):318–328

    Article  Google Scholar 

  • Priest S (2012) Three-dimensional failure criteria based on the Hoek–Brown criterion. Rock Mech Rock Eng 45(6):989–993

    Article  Google Scholar 

  • Ranjith P, Zhao J, Ju M, Silva R, Rathnaweera T, Bandara A (2017) Opportunities and challenges in deep mining: a brief review. Engineering 3(4):546–551

    Article  Google Scholar 

  • RocData (2012). http://www.rocscience.com/products/4/RocData. Accessed 30th Apr 2018

  • Sarkar K, Tiwary A, Singh T (2010) Estimation of strength parameters of rock using artificial neural networks. Bull Eng Geol Environ 69:599–606

    Article  Google Scholar 

  • Shen J, Jimenez R (2018) Predicting the shear strength parameters of sandstone using genetic programming. Bull Eng Geol Environ 77(4):1647–1662

    Article  Google Scholar 

  • Shen J, Karakus M (2014) Three-dimensional numerical analysis for rock slope stability using shear strength reduction method. Can Geotech J 51(2):164–172

    Article  Google Scholar 

  • Shen J, Priest S, Karakus M (2012) Determination of Mohr-Coulomb shear strength parameters from generalized Hoek-Brown criterion for slope stability analysis. Rock Mech Rock Eng 45:123–129

    Article  Google Scholar 

  • Shen J, Jimenez R, Karakus M, Xu C (2014) A simplified failure criterion for intact rocks based on rock type and uniaxial compressive strength. Rock Mech Rock Eng 47(2):357–369

    Article  Google Scholar 

  • Wang W, Shen J (2017) Comparison of existing methods and a new tensile strength based model in estimating the Hoek-Brown constant m i for intact rocks. Eng Geol 224:87–96

    Article  Google Scholar 

  • Zhu Q (2017) A new rock strength criterion from microcracking mechanisms which provides theoretical evidence of hybrid failure. Rock Mech Rock Eng 50(2):341–352

    Article  Google Scholar 

Download references

Acknowledgements

This research has been funded by the National Natural Science Foundation of China (nos. 51504218 and 11372363). The authors would like to express their gratitude to anonymous reviewers for their constructive comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Wan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Wan, L. & Zuo, J. Non-linear Shear Strength Model for Coal Rocks. Rock Mech Rock Eng 52, 4123–4132 (2019). https://doi.org/10.1007/s00603-019-01775-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01775-y

Keywords

Navigation