Skip to main content
Log in

An Advanced Coupled Rock–Fluid Computational Model for Dynamic–Radial Mud Filtration with Experimental Validation

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Drilling mud filtration occurs during an overbalanced drilling activity and concurrently with mud loss through pore throats and fractures. Mud loss and filtration are increased when the wellbore fluid condition is in a dynamic mode (pipe rotation and/or fluid circulation), rather than static. Formation damage is a critical industry challenge that results from mud loss and filtration. There is a considerable amount of experimental studies with only a few modeling approaches for characterizing dynamic mud filtration. Most of these studies have not accounted for factors that can exacerbate mud filtration which includes but not limited to: temperature, pipe rotation, pip/wellbore geometry/eccentricity, and porous media complexity. In this study, two mathematical and computational modeling approaches that can be used to predict dynamic drilling mud filtration in a radial coordinate system are presented. In the first modeling approach, a mechanistic model that is based on a material balance of filter cake evolution is presented. Critical factors that impact dynamic–radial mud filtration (temperature, rotary speed, rock permeability, and rock porosity) and other factors (wellbore/reservoir dimensions, filter cake properties, and mud/filtrate rheological properties at reservoir temperature) were accounted for. The model was solved with a numerical approach and commercial software. In the second approach, a scanning electron microscopy image of selected dry core samples, combined with image processing, was used to estimate the pore size and porosity of the internal filter cake. The pore structure of the rock samples and filter cake was modeled using the bundle of curved tubes approach. The deposition probability of mud particles was considered through filtration theories. The modeling results were validated with dynamic–radial filtration experiments. The results from both models closely matched the experimental results. On average, the models revealed no more than 4% relative error in predicting dynamic mud filtration. The novelty in both approaches is the incorporation of critical parameters in the models over a wide range and their responses to cumulative filtrate invasion in different rock types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

c p :

Mass of particles per unit volume of carrier fluid in slurry (g/cm3mud)

h :

Height of formation/cake height (cm)

K :

Permeability

K f :

Formation permeability (Darcy)

K c :

External mud cake permeability (Darcy)

k :

Consistency index (dynes/cm2/sn′)

k d :

Deposition coefficient (dimensionless)

k e :

Erosion coefficient (s/cm)

L :

Length of the porous media

n :

Flow behavior index (dimensionless)

P :

Trapping probability of particles

P c :

Wellbore pressure at the cake surface (atm)

P e :

Formation pressure (atm)

q :

Filtration rate (cm3/s)

q o :

Initial filtration rate (cm3/s)

RS:

Rotary speed (RPM)

R ps :

Net mass rate of deposition of particles to form external filter cake (g/s/cm2)

r r :

Reduced pore radius

r p :

Pore radius

r e :

Reservoir radius (cm)

r c :

Filter cake radius (cm)

r w :

Wellbore radius (cm)

ppg:

Pounds per gallon

S :

Particles sphericity

T f :

Tortuosity of formation (dimensionless)

T c :

Tortuosity of filter cake (dimensionless)

u c :

Fluid flux at the cake surface (cm/s)

V S :

Volume of the deposited solid particles

x :

Particle radius

β f :

Formation inertial flow coefficient (cm−1)

µ :

Viscosity (cp)

\(\delta\) :

Filter cake thickness (cm)

ρ p :

Particle mass density (g/cm3)

Φ f :

Cake porosity (volume fraction)

φ :

Porosity

θ :

Lumped parameter used in trapping probability calculation

θ 0 :

Lumped parameter of electrical charges

υ :

Flow velocity in pores

υ * :

Minimum fluidization velocity

\(\tau_{\text{cr}}\) :

Critical shear stress (dynes/cm2)

\(\tau_{\text{s}}\) :

Slurry shear stress at the cake surface (dynes/cm2)

ε s :

Volume mass fraction of solid in the filter cake

References

  • Al Otaibi MB, Nasr-El-Din HA, Hill AD (2008) Characteristics and removal of filter cake formed by formate-based drilling mud. In: SPE international symposium and exhibition on formation damage control, Lafayette, Louisiana, 13–15 February. SPE-112427-MS. https://doi.org/10.2118/112427-MS

  • Allen D, Auzerais F, Dussan E, Goode P, Ramakrshnan TS, Schwartz L, Wilkinson D, Fordham E, Hammond P, Williams R (1991) Invasion revisited. Oilfield Rev

  • API 13 B-1 (2003) Recommended practice for field testing water based-drilling fluids, 3rd edn. API, Washington, DC

    Google Scholar 

  • Basanta KS (1974) Determination of average grain sphericity in granular porous media. J Sedim Res 44(2):578–582. https://doi.org/10.1306/74d72a95-2b21-11d7-8648000102c1865d

    Article  Google Scholar 

  • Chenevert ME, Dewan JT (2001) A model for filtration of water-base mud during drilling: determination of mud cake parameters. Petrophysics 42(3):237–250 (SPWLA-2001-v42n3a4)

    Google Scholar 

  • Churcher PL, French PR, Shaw JC et al (1991) Rock properties of Berea sandstone, baker dolomite, and Indiana limestone. In: SPE international symposium on oilfield chemistry, Anaheim, California, 20–22 February. SPE 21044. https://doi.org/10.2523/21044-MS

  • Civan F (1994) A multi-phase mud filtrate invasion and wellbore filter cake formation model. In: SPE international petroleum conference and exhibition of Mexico, Veracruz, Mexico, 10–13 October. SPE-28709-MS. https://doi.org/10.2118/28709-MS

  • Civan F (1996) A multi-purpose formation damage model. In: SPE international symposium and exhibition on formation damage control, Lafayette, Louisiana, 14–15 February. SPE-31101-MS. https://doi.org/10.2118/31101-MS

  • Civan (2007) Reservoir formation damage, 2nd edn. Gulf Publishing Company, Waltham, pp 341–403–780–782

    Google Scholar 

  • Ezeakacha CP (2018) Dynamic drilling fluid loss and filtration: impact of dynamic wellbore conditions and wellbore strengthening implications. PhD Dissertation, The University of Oklahoma, Norman, Oklahoma (December 2018). https://hdl.handle.net/11244/316304

  • Ezeakacha CP, Salehi S (2018) Experimental and statistical investigation of drilling fluids loss in porous media-Part 1. J Nat Gas Sci Eng 51:104–115. https://doi.org/10.1016/j.jngse.2017.12.024

    Article  Google Scholar 

  • Ezeakacha CP, Salehi S, Hayatdavoudi A (2017) Experimental study of drilling fluid’s filtration and mud cake evolution in sandstone formations. ASME J Energy Resour Technol 139(2):022912–022918. https://doi.org/10.1115/1.4035425

    Article  Google Scholar 

  • Ezeakacha CP, Salehi S, Kiran K (2018a) Quantification of multiple factors and interaction effects on drilling fluid invasion. ASME 2018 37th international conference on ocean, offshore and arctic engineering, Madrid Spain, 17–22 June. OMAE2018-78328

  • Ezeakacha CP, Salehi S, Bi H (2018b) A new approach to characterize dynamic drilling fluids invasion profiles in application to near-wellbore strengthening effect. In: IADC/SPE drilling conference and exhibition forth worth, Texas. March 6–8, 2018. IADC/SPE-189596-MS. https://doi.org/10.2118/189596-MS

  • Fakhreldin YE (2010) Novel fluid formulations to remove mud filter-cake without affecting rock mineralogy. In: SPE production and operations conference and exhibition, Tunis, Tunisia, 8–10 June. SPE-136093-MS. https://doi.org/10.2118/136093-MS

  • Forchheimer P (1901) Wasserbewegung durch Boden. Z Ver Deutsch Ing 45(1901):1782–1788

    Google Scholar 

  • Gamwo IK, Kabir MA (2015) Impact of drilling fluid rheology and wellbore pressure on rock cuttings removal performance: numerical investigation. Asia Pac J Chem Eng 10(6):809–822. https://doi.org/10.1002/apj.1917

    Article  Google Scholar 

  • Hajra MG, Reddi LN, Glasgow LA et al (2002) Effects of ionic strength on fine particle clogging of soil filters. J Geotech Geoenviron Eng 128(8):631–639. https://doi.org/10.1061/(asce)1090-0241(2002)128:8(631)

    Article  Google Scholar 

  • Jiao D, Sharma MM (1994) Mechanism of cake buildup in crossflow filtration of colloidal suspensions. J Colloid Interface Sci 162(2):454–462. https://doi.org/10.1006/jcis.1994.1060

    Article  Google Scholar 

  • Kabir MA, Gamwo IK (2011) Filter cake formation on the vertical well at high temperature and high pressure: computational fluid dynamics modeling and simulations. J Pet Gas Eng 2(7):146–164. https://academicjournals.org/journal/JPGE/article-full-text-pdf/34FCA323950

  • Kiran R, Salehi S (2016) Thermoporoelastic modeling of time-dependent wellbore strengthening and casing smear. ASME J Energy Resour Technol 139(2):022903–022907. https://doi.org/10.1115/1.4033591

    Article  Google Scholar 

  • Kozeny J (1927) Uber kapillare leitung der wasser in boden. R Acad Sci Vienna Proc Class I 136:271–306

    Google Scholar 

  • Lanfrey PY, Kuzeljevic ZV, Dudukovic MP (2010) Tortuosity model for fixed beds randomly packed with identical particles. Chem Eng Sci 65(5):1891–1896. https://doi.org/10.1016/j.ces.2009.11.011

    Article  Google Scholar 

  • Lavrov A, Tronvoll J (2004) Modeling mud loss in fractured formations. In: 11th Abu Dhabi international petroleum exhibition and conference, Abu Dhabi, UAE, 10–13 October. SPE-88700. http://dx.doi.org/10.2118/88700-MS

  • Leontaritis K (1998) Asphaltene near-wellbore formation damage modeling. In: SPE international symposium and exhibition on formation damage control, Lafayette, Louisiana, 18–191 February. SPE-39446-MS. https://doi.org/10.2118/39446-MS

  • Ling K, Zhang H, Shen Z et al (2015) A new approach to estimate invasion radius of water-based-drilling-fluid filtrate to evaluate formation damage caused by overbalanced drilling. SPE Drill Complet 30(01):27–37. https://doi.org/10.2118/168184-PA

    Article  Google Scholar 

  • Liu X, Civan F, Evans RD (1995) Correlation of the non-Darcy flow coefficient. J Can Pet Technol 34:10. https://doi.org/10.2118/95-10-05

    Article  Google Scholar 

  • McCabe WL (2005) Unit operations of chemical engineering, 7th edn. MC Graw Hill Chemical Engineering Series, New York

    Google Scholar 

  • McDowell LM, Hunt JR, Sitar N (1986) Particle transport through porous media. Water Recourse Res 22(13):1901–1921. https://doi.org/10.1029/WR022i013p01901

    Article  Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–69. https://doi.org/10.1109/tsmc.1979.4310076

    Article  Google Scholar 

  • Rabbani A, Salehi S (2017) Dynamic modeling of the formation damage and mud cake deposition using filtration theories coupled with SEM image processing. J Nat Gas Sci Eng 42:157–168. https://doi.org/10.1016/j.jngse.2017.02.047

    Article  Google Scholar 

  • Rabbani A, Ayatollahi S, Kharrat R et al (2016) Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image. Adv Water Resour 94:264–277. https://doi.org/10.1016/j.advwatres.2016.05.020

    Article  Google Scholar 

  • Rege SD, Fogler HS (1988) A network model for deep bed filtration of solid particles and emulsion drops. AIChE J 34(11):1761–1772. https://doi.org/10.1002/aic.690341102

    Article  Google Scholar 

  • Salehi S, Kiran R (2016) Integrated experimental and analytical wellbore strengthening solutions by mud plastering effects. ASME J Energy Resour Technol 138(3):032904–032907. https://doi.org/10.1115/1.4032236

    Article  Google Scholar 

  • Salehi S, Hussmann S, Karimi M et al (2014) Profiling drilling fluid’s invasion using scanning electron microscopy: implications for bridging and wellbore strengthening effects. In: SPE deepwater drilling and completions conference, Galveston, Texas, 10–11 September. SPE-170315-MS. http://dx.doi.org/10.2118/170315-MS

  • Salimi S, Andersen KI (2004) Enhancement well productivity-investigating the feasibility of UBD for minimizing formation damage in naturally fractured carbonate reservoirs. In: SPE/IADC underbalanced technology conference and exhibition, Houston, Texas, 11–12 October. SPE/IADC-91544-MS. https://doi.org/10.2118/91544-MS

  • Schembre JM, Kovscek AR (2005) Mechanism of formation damage at elevated temperature. ASME J Energy Resour Technol 127(3):171–180. https://doi.org/10.1115/1.1924398

    Article  Google Scholar 

  • Stein PC (1940) A study of the theory of rapid filtration of water through sand. Massachusetts Institute of Technology, Department of Civil and Sanitary Engineering

  • Tavanaei A, Salehi S (2015) Pore throat and grain detection for rock sem images using digital watershed image segmentation algorithm. J Porous Media 18(5):507–518. https://doi.org/10.1615/JPorMedia.v18.i5.40

    Article  Google Scholar 

  • Tien C, Bai R, Ramarao BV (1997) Analysis of cake growth in cake filtration: effect of fine particle retention. AIChE J 43(1):33–44. https://doi.org/10.1002/aic.690430106

    Article  Google Scholar 

  • Zitoun KB, Sastry SK, Guezennec Y (2001) Investigation of three-dimensional interstitial velocity, solids motion and orientation in solid-liquid flow using particle tracking velocimetry. Int J Multiph Flow 27(8):1397–1414. https://doi.org/10.1016/s0301-9322(01)00011-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Raj Kiran, Dr. Mark Cutis, and Jeff McCaskill at the Mewbourne School of Petroleum and Geological Engineering, The University of Oklahoma for their support in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Salehi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Filter cake material balance is given by (Civan 1994; 1996) as:

$$- \in_{\text{s}} {\raise0.7ex\hbox{${{\text{d}}r_{\text{c}} }$} \!\mathord{\left/ {\vphantom {{{\text{d}}r_{\text{c}} } {{\text{d}}t}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${{\text{d}}t}$}} = {\raise0.7ex\hbox{${R_{\text{ps}} }$} \!\mathord{\left/ {\vphantom {{R_{\text{ps}} } {\rho_{\text{p}} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\rho_{\text{p}} }$}}.$$
(15)

The volume mass fraction of solids as a function of porosity is given as:

$$\in_{\text{s}} = 1 - \emptyset_{\text{c}} .$$
(16)

The net deposition rate of particles to form an external filter cake is given as:

$$R_{\text{ps}} = k_{\text{d}} u_{\text{c}} c_{\text{p}} - k_{\text{e}} \left( {\tau_{\text{s}} - \tau_{\text{cr}} } \right),$$
(17)

where \(\tau_{s}\) is the mud (slurry) shear stress and it is given as:

$$\tau_{\text{s}} = k\left( {\frac{\pi RS}{{15n\left( {1 - G^{{{\raise0.7ex\hbox{${ - 2}$} \!\mathord{\left/ {\vphantom {{ - 2} n}}\right.\kern-0pt} \!\lower0.7ex\hbox{$n$}}}} } \right)}}} \right)^{n} .$$
(18)

In Eq. (18),

$$G = {\raise0.7ex\hbox{${r_{\text{dp}} }$} \!\mathord{\left/ {\vphantom {{r_{\text{dp}} } {r_{\text{c}} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${r_{\text{c}} }$}}, \quad {\text{for}}\quad 0.5 \le {\raise0.7ex\hbox{${r_{\text{dp}} }$} \!\mathord{\left/ {\vphantom {{r_{\text{dp}} } {r_{\text{c}} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${r_{\text{c}} }$}} \le 0.9.$$
(19)

Substituting Eqs. (16) and (17) into (15) yields

$${\raise0.7ex\hbox{${ - {\text{d}}r_{\text{c}} }$} \!\mathord{\left/ {\vphantom {{ - {\text{d}}r_{\text{c}} } {{\text{d}}t}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${{\text{d}}t}$}} = \frac{{k_{\text{d}} u_{\text{c}} c_{\text{p}} - k_{\text{e}} \left( {\tau_{\text{s}} - \tau_{\text{cr}} } \right)}}{{\left( {1 - \emptyset_{\text{c}} } \right)\rho_{\text{p}} }}.$$
(20)

In terms of the filtration rate, the radial volumetric flux at the external cake surface is:

$$u_{\text{c}} = \frac{q}{{2\pi hr_{\text{c}} }}.$$
(21)

Substituting Eq. (21) into (20) gives:

$$- \frac{{{\text{d}}\left( {{\raise0.7ex\hbox{${r_{\text{c}} }$} \!\mathord{\left/ {\vphantom {{r_{\text{c}} } {r_{\text{w}} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${r_{\text{w}} }$}}} \right)}}{{{\text{d}}t}} = A\frac{q}{{{\raise0.7ex\hbox{${r_{\text{c}} }$} \!\mathord{\left/ {\vphantom {{r_{\text{c}} } {r_{\text{w}} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${r_{\text{w}} }$}}}} -B {\quad0} \le {\raise0.7ex\hbox{${r_{\text{c}} }$} \!\mathord{\left/ {\vphantom {{r_{\text{c}} } {r_{\text{w}} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${r_{\text{w}} }$}} \le 1,$$
(22)

where

$$A = \frac{{c_{\text{p}} k_{\text{d}} }}{{\left( {1 - \emptyset_{\text{c}} } \right)\rho_{\text{p}} 2\pi hr_{\text{w}}^{2} }},$$
(23)

and

$$B = \frac{{k_{\text{e}} \left( {\tau_{\text{s}} - \tau_{\text{cr}} } \right)}}{{\left( {1 - \emptyset_{\text{c}} } \right)\rho_{\text{p}} r_{\text{w}} }}.$$
(24)

The Forchheimer’s (1901) equation for radial flow of the mud is given as:

$$- \frac{\partial p}{\partial r} = \frac{\mu }{K}u + \beta \rho u^{2} .$$
(25)

Combining Eqs. (25) and (21) yields:

$$- \frac{\partial p}{\partial r} = \frac{\mu }{2\pi hK}\frac{q}{r} + \frac{\beta \rho }{{2\pi h^{2} }}\left( {\frac{q}{r}} \right)^{2} ,$$
(26)

where \(\beta_{i}\) is the inertial flow coefficient for the rock or filter cake and per Liu et al. (1995), it is given as:

$$\beta_{i} = \frac{{2.92 \times 10^{4} T_{\text{f/ c}} }}{{\emptyset_{\text{f/c}} K_{\text{f/ c}} }}.$$
(27)

In Eq. (27), Tf/c means tortuosity of formation or filter cake. The same goes for the porosity and permeability symbols (please check the Greek symbols). Integrating Eq. (26) for conditions before and during evolution of external filter cake results in Eqs. (28) and (29), respectively:

$$P_{\text{c}} - P_{\text{e}} = \frac{{q_{\text{o}} \mu }}{{2\pi hK_{\text{f}} }}ln\left( {\frac{{r_{\text{e}} }}{{r_{\text{w}} }}} \right) + \frac{{\beta_{\text{f}} \rho q_{\text{o}}^{2} }}{{\left( {2\pi h} \right)^{2} }}\left( {\frac{1}{{r_{\text{w}} }} - \frac{1}{{r_{\text{e}} }}} \right)^{2} ,$$
(28)
$$- P_{\text{e}} = \frac{q\mu }{{2\pi hK_{\text{f}} }}\left[ {ln\left( {\frac{{r_{\text{e}} }}{{r_{\text{w}} }}} \right) + \frac{{K_{\text{f}} }}{{K_{\text{c}} }}ln\left( {\frac{{r_{\text{w}} }}{{r_{\text{c}} }}} \right)} \right] + \frac{{\beta_{\text{f}} \rho q}}{{\left( {2\pi h} \right)^{2} }}\left[ {\frac{1}{{r_{\text{w}} }} - \frac{1}{{r_{\text{e}} }} + \frac{{\beta_{\text{c}} }}{{\beta_{\text{f}} }}\left( {\frac{1}{{r_{\text{w}} }} - \frac{1}{{r_{\text{e}} }}} \right)} \right].$$
(29)

Combining Eqs. (28) and (29) eliminates (PcPe) and yields the quadratic Eq. (30) for non-Darcy mud filtrate flow rate:

$$\alpha q^{2} + \beta q + \gamma = 0,$$
(30)

whose solution is in Eq. (31) (Civan 2007)

$$q = \frac{{ - \beta + \sqrt {\beta^{2} - 4\alpha \gamma } }}{2\alpha },$$
(31)

where

$$\alpha = \frac{\rho }{{\left( {2\pi h} \right)^{2} }}\left[ {\beta_{\text{f}} \left( {\frac{1}{{r_{\text{w}} }} - \frac{1}{{r_{\text{e}} }}} \right) + \beta_{\text{c}} \left( {\frac{1}{{r_{{{\text{w}} - \delta }} }} - \frac{1}{{r_{\text{w}} }}} \right)} \right], .$$
(32)
$$\beta = \frac{\mu }{{2\pi hK_{\text{f}} }}\left[ {\ln \left( {\frac{{r_{\text{e}} }}{{r_{\text{w}} }}} \right) + \frac{{K_{\text{f}} }}{{K_{\text{c}} }}ln\left( {\frac{{r_{\text{w}} }}{{r_{\text{w}} - \delta }}} \right)} \right],$$
(33)
$$\gamma = - \left[ {\frac{{q_{\text{o}} \mu }}{{2\pi hK_{\text{f}} }}ln\left( {\frac{{r_{\text{e}} }}{{r_{\text{w}} }}} \right) + \frac{{\beta_{\text{f}} \rho q_{\text{o}}^{2} }}{{\left( {2\pi h} \right)^{2} }}\left( {\frac{1}{{r_{\text{w}} }} - \frac{1}{{r_{\text{e}} }}} \right)} \right].$$
(34)

The filter cake thickness (δ) is a function of wellbore radius and filter cake radius (δ = rw − rc).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezeakacha, C.P., Salehi, S. An Advanced Coupled Rock–Fluid Computational Model for Dynamic–Radial Mud Filtration with Experimental Validation. Rock Mech Rock Eng 52, 3757–3770 (2019). https://doi.org/10.1007/s00603-019-01804-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01804-w

Keywords

Navigation