Skip to main content
Log in

Method for Generating a Discrete Fracture Network from Microseismic Data and its Application in Analyzing the Permeability of Rock Masses: a Case Study

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

A Correction to this article was published on 08 February 2019

This article has been updated

Abstract

The deformation and failure process of rock masses is accompanied by the initiation, propagation and connection of fractures. The behaviors of fractures under engineering disturbance can be effectively determined by microseismic (MS) monitoring, and such information is essential for the stability analysis of rock masses. Based on moment tensor theory, the geometric properties of focal planes and the failure mechanisms of the seismic source can be determined, and this study proposes criteria for extracting the reasonable fracture from focal planes associated with different failure mechanisms and provides a detailed example. The fracture identified by the proposed criteria is called MS-derived fracture, and a formula describing the aperture is derived from the moment tensor theory and the motion characteristics of the MS-derived fractures associated with different failure mechanisms. This work chose the Shirengou Iron Mine as a case and selected an area exhibiting seepage and rock mass failure as the study area. Based on a three-dimensional noncontact discontinuity scan, a natural discrete fracture network (DFN) was generated. With the help of the proposed fracture generation method, a new DFN based on MS data was generated and is referred to as the MS-derived DFN. With the aid of Oda’s theory, the changes in the permeability value, principal direction and anisotropy degree in the study area were analyzed based on the MS-derived DFN, and the seepage channels in the study area were also determined. Therefore, the research methods in this paper could be used to better understand the changes in the permeability of rock masses based on MS data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Change history

  • 08 February 2019

    This paper, not properly checked by the authors when receiving the proofs, is in need of corrections as indicated below.

Abbreviations

M :

Moment tensor

M ISO :

Isotropic component of the moment tensor

M DC :

Pure double couple component of the moment tensor

\({{\mathbf{M}}_{{\text{CLVD}}}}\) :

Compensated linear vector dipole component of the moment tensor

\({M_{{\text{ISO}}}}\), \({M_{{\text{ISO}}}}\), \({M_{{\text{CLVD}}}}\) :

The ISO, DC and CLVD coordinates in the 3D source-type space

\({C_{{\text{ISO}}}}\), \({C_{{\text{DC}}}}\), \({C_{{\text{CLVD}}}}\) :

The proportion of ISO, DC and CLVD

\(m_{i}^{ * }\) :

The eigenvalues of the deviatoric moment tensor

M 1, M 2, M 3 :

Three eigenvalues of the moment tensor

\({{\mathbf{{\rm E}}}_{{\text{ISO}}}}\), \({{\mathbf{{\rm E}}}_{{\text{DC}}}}\), \({{\mathbf{{\rm E}}}_{{\text{CLVD}}}}\) :

The base tensor of ISO, DC and CLVD

\({K_c}\) :

A constant relating to a source model

\({f_c}\) :

Corner frequency

\({\beta _0}\) :

S-wave velocity

\({r_{\text{s}}}\) :

Source radius

\(\Delta V\) :

Fracture volume change

U :

Matrix of displacements

G :

Green’s function

\({{\mathbf{e}}_1}\), \({{\mathbf{e}}_2}\), \({{\mathbf{e}}_3}\) :

Eigenvectors of the moment tensor

\({\mathbf{n}}\), \({\mathbf{v}}\) :

The normal and motion vector of the fracture

\({n_i}\), \({n_j}\) :

Components of \({\mathbf{n}}\) on the coordinate axis

r :

Length of the fracture

ρ :

Number of fractures per unit volume

\({\delta _{ij}}\) :

Kronecker delta

\(Ro{t_{11}}\) :

Rotation angle of maximum principal permeability

λ, µ :

Lame constants

\({t_0}\), \(\Delta t\) :

Initial aperture of the pre-existing fracture, aperture change of MS-derived fracture

\(\lambda ^{\prime}\) :

Nondimensional coefficient describing the connectivity of fractures

u :

Displacement on the motion direction of the MS-derived fracture

S :

Surface area of the MS-derived fracture

θ :

Angle between \({\mathbf{n}}\) and \({\mathbf{v}}\)

E :

Elastic modulus

\(\upsilon\) :

Poisson’s ratio

t :

Fracture aperture

τ :

Shear stress

\({\sigma _n}\) :

Normal stress

\({\sigma _1}\), \({\sigma _2}\), \({\sigma _3}\) :

Maximum, intermediate and minimum principal stresses

l, m, n :

Cosines of the normal direction of the fracture

\({T_s}\), \({T_t}\) :

Shear failure tendency and tensile failure tendency

\({\mu _x}\), \({\sigma _x}\) :

The mean and the standard deviation

\({t_m}\), \({r_m}\) :

Maximum aperture and maximum length of the fractures

\(E({\mathbf{n}},r,t)\) :

Probability density function of \({\mathbf{n}}\), r and t

\({P_{ij}}\) :

Second-rank fracture tensor

Ω :

Whole solid angle

\({P_{{\text{natural}}}}\), \({P_{{\text{MS}}}}\), \({P_{{\text{total}}}}\) :

Fracture tensor of the natural fractures, MS-derived fractures, and the total fractures

\({K_1}\), \({K_2}\), \({K_3}\) :

Three eigenvalues of the permeability tensor

\(\bar {K}\) :

Geometric average of the permeability

AD:

Anisotropy degree

References

  • Aki K, Richards PG (2002) Quantitative Seismology. In: Quantitative seismology, 2nd edn. W. H. Freeman, New York

    Google Scholar 

  • Alghalandis YF, Dowd PA, Xu C (2013) The RANSAC method for generating fracture networks from micro-seismic event data. Math Geosci 45:207–224

    Article  Google Scholar 

  • Andersen LM (2001) A relative moment tensor inversion technique applied to seismicity induced by mining. Univ of the Witwatersrand, Johannesburg

    Google Scholar 

  • Angelier J (2002) Inversion of earthquake focal mechanisms to obtain the seismotectonic stress IV-a new method free of choice among nodal planes. Geophys J Int 150:588–609

    Article  Google Scholar 

  • Arnold R, Townend J (2007) A Bayesian approach to estimating tectonic stress from seismological data. Geophys J Int 170:1336–1356

    Article  Google Scholar 

  • Baig A, Urbancic T (2010) Microseismic moment tensors: a path to understanding frac growth. Lead Edge 29:320–324

    Article  Google Scholar 

  • Baig AM, Ardakani EP, Urbancic T, Dan K, Rich J, Langton D, Silver K (2017) Integration of SMTI topology with dynamic parameter analysis to characterize fracture-connectivity related to flow and production along wellbores in the STACK play. First Break 35:59–66

    Google Scholar 

  • Bandis S, Lumsden AC, Barton NR (1981) Experimental studies of scale effects on the shear behaviour of rock joints. Int J Rock Mech Min Sci Geomech Abstr 18:1–21

    Article  Google Scholar 

  • Bohnhoff M, Dresen G, Ellsworth WL, Ito H (2010) Passive seismic monitoring of natural and induced earthquakes: case studies, future directions and socio-economic relevance. In: Cloetingh S, Negendank J (eds) New frontiers in integrated solid earth sciences. Springer, Heidelberg, pp 261–285

    Google Scholar 

  • Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75:4997–5009

    Article  Google Scholar 

  • Byerlee J (1978) Friction of rocks. Pure Appl Geophys 116:615–626

    Article  Google Scholar 

  • Cai M, Kaiser PK, Martin CD (1998) A tensile model for the interpretation of microseismic events near underground openings. Pure Appl Geophys 153:67–92

    Article  Google Scholar 

  • Cai M, Kaiser PK, Martin CD (2001) Quantification of rock mass damage in underground excavations from microseismic event monitoring. Int J Rock Mech Min 38:1135–1145

    Article  Google Scholar 

  • Chang SH, Lee CI (2004) Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission. Int J Rock Mech Min Sci 41:1069–1086

    Article  Google Scholar 

  • Chen SH, Feng XM, Isam S (2008) Numerical estimation of rev and permeability tensor for fractured rock masses by composite element method. Int J Numer Anal Methods 32:1459–1477

    Article  Google Scholar 

  • Cheng GW, Ma TH, Tang CA, Liu HY, Wang SJ (2017) A zoning model for coal mining—induced strata movement based on microseismic monitoring. Int J Rock Mech Min Sci 94:123–138

    Article  Google Scholar 

  • Chesnaux R, Allen DM, Jenni S (2009) Regional fracture network permeability using outcrop scale measurements. Eng Geol 108:259–271

    Article  Google Scholar 

  • Coli N, Pranzini G, Alfi A, Boerio V (2008) Evaluation of rock-mass permeability tensor and prediction of tunnel inflows by means of geostructural surveys and finite element seepage analysis. Eng Geol 101:174–184

    Article  Google Scholar 

  • Cornette BM, Telker C, Pena ADL (2012) Refining discrete fracture networks with surface microseismic mechanism inversion and mechanism-driven event location. In: Presented at the SPE hydraulic fracturing technology conference, The Woodlands

  • Cundall PA, Pierce ME, Ivars DM (2008) Quantifying the size effect of rock mass strength. In: Southern hemisphere international rock mechanics symposium, vol. 2

  • Detring JP, Williams-Stroud S (2012) Using microseismicity to understand subsurface fracture systems and increase the effectiveness of completions: Eagle Ford Shale, TX. In: Paper SPE 162845 presented at the SPE Canadian unconventional resources conference, vol. 30. Calgary, Alberta, Canada

  • Dreuzy J, Davy P, Bour O (2001) Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 2. permeability of networks based on lognormal distribution of apertures. Water Resour Res 37:2079–2096

    Article  Google Scholar 

  • Esmaieli K, Hadjigeorgiou J, Grenon M (2010) Estimating geometrical and mechanical rev based on synthetic rock mass models at Brunswick Mine. Int J Rock Mech Min Sci 47:915–926

    Article  Google Scholar 

  • Eyre TS (2015) Overview of moment-tensor inversion of microseismic events. Lead Edge 34:882–888

    Article  Google Scholar 

  • Fang Y, Elsworth D, Cladouhos TT (2018) Reservoir permeability mapping using microearthquake data. Geothermics 72:83–100

    Article  Google Scholar 

  • Feignier B, Young RP (1992) Moment tensor inversion of induced microseismic events: evidence of non-shear failures in the − 4 < M < − 2 moment magnitude range. Geophys Res Lett 19:1503–1506

    Article  Google Scholar 

  • Ferrandon J (1948) Les lois de l’ecoulement de filtration. Genie Civ 125:24–28

    Google Scholar 

  • Ferrill DA, Morris AP (2003) Dilational normal faults. J Struct Geol 25:183–196

    Article  Google Scholar 

  • Fischer T, Guest A (2011) Shear and tensile earthquakes caused by fluid injection. Geophys Res Lett 38:387–404

    Google Scholar 

  • Gendzwill DJ, Prugger AF (1985) Algorithms for microearthquake locations. In: Proceedings of 4th symposium on acoustic emissions and microseismicity, Penn State University, College Park, Pennsylvania

  • Gephart JW. Forsyth DW (1984) An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. J Geophys Res 89:9305–9320

    Article  Google Scholar 

  • Gibowicz SJ, Kijko A (1994) An introduction to mining seismology. Academic Press, San Diego

    Google Scholar 

  • Gonidec YL, Sarout J, Wassermann J, Nussbaum C (2014) Damage initiation and propagation assessed from stress-induced microseismic events during a mine-by test in the Opalinus Clay. Geophys J Int 198:126–139

    Article  Google Scholar 

  • Hancock PL (1985) Brittle microtectonics: principles and practice. J Struct Geol 7:437–457

    Article  Google Scholar 

  • Hardebeck JL, Michael AJ (2006) Damped regional-scale stress inversions: methodology and examples for Southern California and the Coalinga aftershock sequence. J Geophys Res 111:B11310

    Article  Google Scholar 

  • Hartigan JA (1979) A K-means clustering algorithm. Appl Stat 28:100–108

    Article  Google Scholar 

  • Hoek E, Brown ET (1980) Underground excavation in rock. Institution of Mining and metallurgy, London

    Google Scholar 

  • Hoek E, Carranza-Torres C, Corkum B (2002) Hoek-Brown failure criterion-2002 Edition. In: Proceedings of Narms-Tac conference, Toronto

  • Huang JW, Bellefleur G, Milkereit B (2009) Seismic modeling of multidimensional heterogeneity scales of Mallik gas hydrate reservoirs, Northwest Territories of Canada. J Geophys Res Atmos 114:261–281

    Article  Google Scholar 

  • Huang J, Safari R, Mutlu U, Burns K, Geldmacher I, Mcclure M, Austin UT (2015) Natural-hydraulic fracture interaction: Microseismic observations and geomechanical predictions. In: Presented at the SPE/AAPG/SEG Unconventional resources technology conference, Denver, pp 25–27 August. SP

  • Jaeger JC, Cook NGW (1979) Fundamentals of rock mechanics, 3rd edn. Chapman & Hall, London

    Google Scholar 

  • Knopoff L, Randall MJ (1970) The compensated linear-vector dipole: a possible mechanism for deep earthquakes. J Geophys Res 75:4957–4963

    Article  Google Scholar 

  • Kulatilake PHSW, Wang S, Stephansson O (1993) Effect of finite size joints on the deformability of jointed rock in three dimensions. Int J Rock Mech Min Sci Geomech Abs 30:479–501

    Article  Google Scholar 

  • Kwiatek G, Charalampidou EM, Dresen G, Stanchits S (2014) An improved method for seismic moment tensor inversion of acoustic emissions through assessment of sensor coupling and sensitivity to incidence angle. Int J Rock Mech Min Sci 65:153–161

    Article  Google Scholar 

  • Kwiatek G, Martínez-Garzón P, Bohnhoff M (2016) HybridMT: A MATLAB/Shell Environment package for seismic moment tensor inversion and refinement. Seismol Res Lett 87:964–976

    Article  Google Scholar 

  • Lacazette A, Laudon C (2015) Ambient seismic imaging throughout the unconventional field’s life cycle. J Petrol Technol 67:32–35

    Article  Google Scholar 

  • Larsen B, Grunnaleite I, Gudmundsson A (2010) How fracture systems affect permeability development in shallow-water carbonate rocks: an example from the Gargano Peninsula, Italy. J Struct Geol 32:1212–1230

    Article  Google Scholar 

  • Lisle RJ, Srivastava DC (2004) Test of the frictional reactivation theory for faults and validity of fault-slip analysis. Geology 32:569–572

    Article  Google Scholar 

  • Liu JP, Li YH, Xu SD, Xu S, Jin CY, Liu ZS (2015) Moment tensor analysis of acoustic emission for cracking mechanisms in rock with a pre-cut circular hole under uniaxial compression. Eng Fract Mech 135:206–218

    Article  Google Scholar 

  • Ma K, Tang CA, Wang LX, Tang DH, Zhuang DY, Zhang QB, Zhao J (2016) Stability analysis of underground oil storage caverns by an integrated numerical and microseismic monitoring approach. Tunn Undergr Space Tech 54:81–91

    Article  Google Scholar 

  • Madariaga R (1976) Dynamics of an expanding circular fault. Bull Seismol Soc Am 66:639–666

    Google Scholar 

  • Mandl G (1988) Mechanics of tectonic faulting: models and basic concepts. Elsevier, Distributors for the US, Elsevier Science Pub. Co, New York

    Google Scholar 

  • Martínez-Garzón P, Kwiatek G, Ickrath M, Bohnhoff M (2014) Msatsi: a MATLAB package for stress inversion combining solid classic methodology, a new simplified user-handling, and a visualization tool. Seismol Res Lett 85:896–904

    Article  Google Scholar 

  • Martínez-Garzón P, Kwiatek G, Bohnhoff M, Dresen G (2016) Impact of fluid injection on fracture reactivation at The Geysers geothermal field. J Geophy Res Sol Ea 121:7432–7449

    Article  Google Scholar 

  • Maury J, Cornet FH, Dorbath L (2013) A review of methods for determining stress fields from earthquake focal mechanisms: application to the Sierentz 1980 seismic crisis (Upper Rhine graben). Bull Soc Geol Fr 184:319–334

    Article  Google Scholar 

  • Maxwell SC, Rutledge J, Jones R, Fehler M (2010) Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics 75:75A129

    Article  Google Scholar 

  • Mcgarr A (1992) Moment tensors of ten witwatersrand mine tremors. Pure Appl Geophys 139:781–800

    Article  Google Scholar 

  • Mendecki AJ (1997) Seismic monitoring in mines. Chapman & Hall, London

    Google Scholar 

  • Michael AJ (1984) Determination of stress from slip data: faults and folds. J Geophys Res 89:526 (11 517 – 11)

    Google Scholar 

  • Miller AD, Julian BR, Foulger GR (2010) Three-dimensional seismic structure and moment tensors of non-double-couple earthquakes at the Hengill-Grensdalur volcanic complex, Iceland. Geophys J Roy Astron Soc 133:309–325

    Article  Google Scholar 

  • Min KB, Jing L, Stephansson O (2004) Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: method and application to the field data from Sellafield, UK. Hydrogeol J 12:497–510

    Article  Google Scholar 

  • Moeck I, Kwiatek G, Zimmermann G (2009) Slip tendency analysis, fault reactivation potential and induced seismicity in a deep geothermal reservoir. J Struct Geol 31:1174–1182

    Article  Google Scholar 

  • Morris A, Ferrill DA, Henderson DBB (1996) Slip-tendency analysis and fault reactivation. Geol 24:275–278

    Article  Google Scholar 

  • Nolen-Hoeksema RC, Ruff LJ (2001) Moment tensor inversion of microseisms from the B-sand propped hydrofracture, M-site, Colorado. Tectonophysics 336:163–181

    Article  Google Scholar 

  • Oda M (1985) Permeability tensor for discontinuous rock masses. Geotechnique 35:483–495

    Article  Google Scholar 

  • Oda M (1986) An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses. Water Resour Res 22:1845–1856

    Article  Google Scholar 

  • Oda M, Hatsuyama Y, Ohnishi Y (1987) Numerical experiments on permeability tensor and its application to jointed granite at Stripa Mine, Sweden. J Geophys Res Sol Earth 92:8037–8048

    Article  Google Scholar 

  • Odonne F, Lézin C, Massonnat G, Escadeillas G (2007) The relationship between joint aperture, spacing distribution, vertical dimension and carbonate stratification: an example from the Kimmeridgian limestones of Pointe-du-Chay (France). J Struct Geol 29:746–758

    Article  Google Scholar 

  • Ohtsu M (1995) Acoustic emission theory for moment tensor analysis. Res Nondestruct Eval 6:169–184

    Article  Google Scholar 

  • Rodriguez IV (2011) Automatic Time-picking of microseismic data combining STA / LTA and the stationary discrete wavelet transform. CSPG CSEG CWLS Convention Abstracts, pp 1–4

  • Seifollahi S, Dowd PA, Xu C, Fadakar AY (2014) A spatial clustering approach for stochastic fracture network modelling. Rock Mech Rock Eng 47:1225–1235

    Article  Google Scholar 

  • Sen AT, Cesca S, Bischoff M, Meier T, Dahm T (2013) Automated full moment tensor inversion of coal mining-induced seismicity. Geophys J Int 195:1267–1281

    Article  Google Scholar 

  • Shang XY, Li XB, Morales-Esteban A, Asencio-Cortés G, Wang ZW (2018) Data field-based K-means clustering for spatio-temporal seismicity analysis and hazard assessment. Remote Sens 10:461

    Article  Google Scholar 

  • Shigeishi M, Ohtsu M (2001) Acoustic emission moment tensor analysis: development for crack identification in concrete materials. Constr Build Mater 15:311–319

    Article  Google Scholar 

  • Si GY, Durucan S, Jamnikar S, Lazar J, Abraham K, Korre A, Shi JQ, Zavšek S, Mutke G, Lurka A (2015) Seismic monitoring and analysis of excessive gas emissions in heterogeneous coal seams. Int J Coal Geol 149:41–54

    Article  Google Scholar 

  • Šílený J, Milev A (2006) Seismic moment tensor resolution on a local scale: simulated rockburst and mine-induced seismic events in the Kopanang gold mine, South Africa. Pure Appl Geophys 163:1495–1513

    Article  Google Scholar 

  • Snow DT (1969) Anisotropic permeability of fractured media. Water Resour Res 5:1273–1289

    Article  Google Scholar 

  • Stierle E, Bohnhoff M, Vavryčuk V (2014) Resolution of non-double-couple components in the seismic moment tensor using regional networks—II: application to aftershocks of the 1999 Mw 7.4 Izmit earthquake. Geophysl J Int 196:1878–1888

    Article  Google Scholar 

  • Tape W, Tape C (2012) A geometric setting for moment tensors. Geophys J Int 190:476–498

    Article  Google Scholar 

  • Tibi R, Vermilye J, Lacazette A, Rabak I, Luh P, Sicking C, Peter Geiser P (2013) Assessment of hydraulic fracture complexity and stress field variability in an unconventional reservoir from composite moment tensor of double-couple microseismic event. SEG Tech Program Expand Abstr 2013:2183–2187

    Google Scholar 

  • Trifu CI, Urbancic TI (1996) Fracture coalescence as a mechanism for earthquakes: observations based on mining induced microseismicity. Tectonophysics 261:193–207

    Article  Google Scholar 

  • Urbancic TI, Trifu CI, Young PR (1993) Microseismicity derived fault-planes and their relationship to focal mechanism, stress inversion, and geologic data. Geophys Res Lett 20:2475–2478

    Article  Google Scholar 

  • Urbancic TI, Baig A, Goldstein SB (2012) Assessing stimulation of complex natural fractures as characterized using microseismicity: an argument the inclusion of sub-horizontal fractures in reservoir models. In: Presented at the SPE hydraulic fracturing technology conference, The Woodlands, Texas

  • Vavryčuk V (2001) Inversion for parameters of tensile earthquakes. J Geophys Res 106:16,339–16,355

    Article  Google Scholar 

  • Vavryčuk V (2014) Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophys J Int 199:69–77

    Article  Google Scholar 

  • Vavryčuk V (2015) Moment tensor decompositions revisited. J Seismol 19:231–252

    Article  Google Scholar 

  • Wang M, Kulatilake PHSW, Um J, Narvaiz J (2002) Estimation of rev size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modeling. Int J Rock Mech Min Sci 39:887–904

    Article  Google Scholar 

  • Wang R, Gu YJ, Schultz R, Chen Y (2018) Faults and non-double-couple components for induced earthquakes. Geophys Res Let 45:8966–8975

    Article  Google Scholar 

  • Warpinski NR, Mayerhofer M, Agarwal K, Du J (2013) Hydraulic-fracture geomechanics and microseismic-source mechanisms. SPE J 18:766–780

    Article  Google Scholar 

  • Williams-Stroud SC, Eisner L (2010) Stimulated fractured reservoir DFN models calibrated with microseismic source mechanisms: American Rock Mechanics Association, 44th US rock mechanics symposium and 5th US-Canada rock mechanics symposium, Salt Lake City, Utah

  • Williams-stroud S, Ozgen C, Billingsley RL (2013) Microseismicity-constrained discrete fracture network models for stimulated reservoir simulation. Geophysics 78:B37–B47

    Article  Google Scholar 

  • Woodward K, Wesseloo J, Potvin Y (2017) A spatially focused clustering methodology for mining seismicity. Eng Geol 232:104–113

    Article  Google Scholar 

  • Wu WJ, Dong JJ, Cheng YJ, Wu CN, Hung JH, Liu CN (2015) Application of Oda’s permeability tensor for determining transport properties in fractured sedimentary rocks: a case study of Pliocene-Pleistocene formation in TCDP. In: Engineering geology for society and territory, Vol 3. Springer, New York

    Google Scholar 

  • Xiao YX, Feng XT, Hudson JA, Chen BR, Feng LG, Liu JP (2016) ISRM suggested method for in situ microseismic monitoring of the fracturing process in rock masses. Rock Mech Rock Eng 49:343–369

    Article  Google Scholar 

  • Young RP, Collins DS (2001) Seismic studies of rock fracture at the underground research laboratory, Canada. Int J Rock Mech Min Sci 38:787–799

    Article  Google Scholar 

  • Young RP, Maxwell SC, Urbancic TI, Feignier B (1992) Mining-induced microseismicity: monitoring and applications of imaging and source mechanism techniques. Pure Appl Geophys 139:697–719

    Article  Google Scholar 

  • Young RP, Collins DS, Reyes-Montes JM, Baker C (2004) Quantification and interpretation of seismicity. Int J Rock Mech Min Sci 41:1317–1327

    Article  Google Scholar 

  • Zang A, Oye V, Jousset P, Deichmann N, Gritto R, McGarr A, Majer E, Bruhn D (2014) Analysis of induced seismicity in geothermal reservoirs—an overview. Geothermics 52:6–21

    Article  Google Scholar 

  • Zhang PH, Yang TH, Yu QL, Xu T, Shi WH, Li SC (2016) Study of a seepage channel formation using the combination of microseismic monitoring technique and numerical method in Zhangmatun Iron Mine. Rock Mech Rock Eng 49:1–10

    Article  Google Scholar 

  • Zhao Y, Yang TH, Zhang PH, Zhou JR, Yu QL, Deng WX (2017) The analysis of rock damage process based on the microseismic monitoring and numerical simulations. Tunn Undergr Space Tech 69:1–17

    Article  Google Scholar 

  • Zhao Y, Yang TH, Bohnhoff M, Zhang PH, Yu QL, Zhou JR, Liu FY (2018) Study of the rock mass failure process and mechanisms during the transformation from open-pit to underground mining based on microseismic monitoring. Rock Mech Rock Eng 51:1473–1493

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFC0801602 and 2017YFC1503100), the National Natural Science Foundation of China (51574060 and 51604062) and the China Scholarship Council (201706080101). We thank the anonymous reviewer for constructive comments that helped improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhong Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Moment Tensor Decomposition

According to the moment tensor decomposition method proposed by Knopoff and Randall (1970) and Vavryčuk (2015), the moment tensor can be decomposed according to the following equation.

$$\begin{aligned} {\mathbf{M}} & ={{\mathbf{M}}_{{\text{ISO}}}}+{{\mathbf{M}}_{{\text{DC}}}}+{{\mathbf{M}}_{{\text{CLVD}}}} \\ & ={M_{{\text{ISO}}}}{{\mathbf{E}}_{{\text{ISO}}}}+{M_{{\text{DC}}}}{{\mathbf{E}}_{{\text{DC}}}}+{M_{{\text{CLVD}}}}{{\mathbf{E}}_{{\text{CLVD}}}} \\ \end{aligned}$$
(24)

where \({{\mathbf{M}}_{{\text{ISO}}}}\) represents the isotropic component of the moment tensor, which is the center of expansion (or compression) and describes changes in the volume of the seismic source region; \({{\mathbf{M}}_{{\text{DC}}}}\) represents the pure double couple component; and \({{\mathbf{M}}_{{\text{CLVD}}}}\) represents the compensated linear vector dipole component. \({M_{{\text{ISO}}}}\), \({M_{{\text{CLVD}}}}\) and \({M_{{\text{DC}}}}\) are the ISO, CLVD and DC coordinates in the 3D source-type space, respectively, and \({{\mathbf{E}}_{{\text{ISO}}}}\), \({{\mathbf{E}}_{{\text{CLVD}}}}\) and \({{\mathbf{E}}_{{\text{DC}}}}\) are the ISO, CLVD and DC base tensors, respectively. The base tensors can be expressed as follows:

$${\mathbf{E}}_{{{\text{ISO}}}} = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}l} {\begin{array}{*{20}l} 1 \hfill & {\quad 0} \hfill \\ \end{array} } \hfill & 0 \hfill \\ \end{array} } \hfill \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & {\quad 1} \\ \end{array} } & {\quad 0} \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & {\quad 0} \\ \end{array} } & {\quad 1} \\ \end{array} } \\ \end{array} } \hfill \\ \end{array} } \right]$$
(25)
$${{\mathbf{E}}_{{\text{DC}}}}=\left[ {\begin{array}{*{20}{c}} 1&0&0 \\ 0&0&0 \\ 0&0&{ - 1} \end{array}} \right]$$
(26)
$${\mathbf{E}}_{{{\text{CLVD}}}}^{+}=\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 2&0&0 \\ 0&{ - 1}&0 \\ 0&0&{ - 1} \end{array}} \right]\;\left( {{\text{if}}\;{M_1}+{M_3} - 2{M_2} \geqslant 0} \right)$$
(27)
$${\mathbf{E}}_{{{\text{CLVD}}}}^{ - }=\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 1& \quad 0& \quad 0 \\ 0& \quad 1& \quad 0 \\ 0& \quad 0& \quad { - 2} \end{array}} \right]\;\left( {{\text{if}}\;{M_1}+{M_3} - 2{M_2}<0} \right)$$
(28)

The \({M_{{\text{ISO}}}}\), \({M_{{\text{CLVD}}}}\) and \({M_{{\text{DC}}}}\) can be expressed as follows:

$${M_{{\text{ISO}}}}=\frac{1}{3}({M_1}+{M_2}+{M_3})$$
(29)
$${M_{{\text{CLVD}}}}=\frac{2}{3}({M_1}+{M_3} - 2{M_2})$$
(30)
$${M_{{\text{DC}}}}=\frac{1}{2}({M_1} - {M_3} - \left| {{M_1}+{M_3} - 2{M_2}} \right|)$$
(31)

where \({M_{{\text{CLVD}}}}\) also considers the sign of the base CLVD tensor. If the base CLVD tensor is considered with its sign, then \({M_{{\text{CLVD}}}}\) should be calculated as the absolute value of Eq. (30) M1, M2 and M3 are the eigenvalues of the moment tensor, where the relationship is M1 > M2 > M3.

The moment tensor can characterize the event magnitude, fracture type (e.g., double-couple or tensile), and fracture orientation. It is necessary to solve the proportions of ISO, DC and CLVD in the moment tensor, \({C_{{\text{ISO}}}}\), \({C_{{\text{DC}}}}\) and \({C_{{\text{CLVD}}}}\) (Eyre 2015). The relative scale factors \({C_{{\text{ISO}}}}\), \({C_{{\text{DC}}}}\) and \({C_{{\text{CLVD}}}}\) can be defined as:

$$\left[ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{C_{{\text{ISO}}}}} \\ {{C_{{\text{DC}}}}} \end{array}} \\ {{C_{{\text{CLVD}}}}} \end{array}} \right]=\frac{1}{M}\left[ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{M_{{\text{ISO}}}}} \\ {{M_{{\text{DC}}}}} \end{array}} \\ {{M_{{\text{CLVD}}}}} \end{array}} \right]$$
(32)

where

$$M=\left| {{M_{{\text{ISO}}}}} \right|+{M_{{\text{DC}}}}+\left| {{M_{{\text{CLVD}}}}} \right|$$
(33)
$$\left| {{C_{{\text{ISO}}}}} \right|+{C_{{\text{DC}}}}+\left| {{C_{{\text{CLVD}}}}} \right|=1$$
(34)

1.2 Fracture Geometric Properties

Based on the symmetry of the moment tensor and the eigenvalues of the moment tensor, the eigenvectors of the moment tensor can be expressed as follows:

$${{\mathbf{e}}_1}=\frac{{{\mathbf{n}}+{\mathbf{v}}}}{{\left| {{\mathbf{n}}+{\mathbf{v}}} \right|}},\;{{\mathbf{e}}_2}=\frac{{{\mathbf{n}} \otimes {\mathbf{v}}}}{{\left| {{\mathbf{n}} \otimes {\mathbf{v}}} \right|}},\;{{\mathbf{e}}_3}=\frac{{{\mathbf{n}} - {\mathbf{v}}}}{{\left| {{\mathbf{n}} - {\mathbf{v}}} \right|}}$$
(35)

where the relationship of \({{\mathbf{e}}_1}\), \({{\mathbf{e}}_2}\) and \({{\mathbf{e}}_3}\) is \({{\mathbf{e}}_1} \ \bot \ {{\mathbf{e}}_2} \ \bot \ {{\mathbf{e}}_3}\), the absolute value sign represents the vector size, and \(\otimes\) is the symbol of vector multiplication.

The normal and motion direction of the focal plane can be deduced, as shown below:

$$\left\{ {\begin{array}{*{20}{c}} {{\mathbf{n}}=\sqrt {\frac{{{M_1} - {M_2}}}{{{M_1} - {M_3}}}} {{\mathbf{e}}_1}+\sqrt {\frac{{{M_2} - {M_3}}}{{{M_1} - {M_3}}}} {{\mathbf{e}}_3}} \\ {{\mathbf{v}}=\sqrt {\frac{{{M_1} - {M_2}}}{{{M_1} - {M_3}}}} {{\mathbf{e}}_1} - \sqrt {\frac{{{M_2} - {M_3}}}{{{M_1} - {M_3}}}} {{\mathbf{e}}_3}} \end{array}} \right.$$
(36)

The source dimension is usually expressed as the radius of the fault and is related to the corner frequency of the P-wave or S-wave. A general feature of seismic spectra that have been corrected for attenuation is that the corner frequency fc can be related to the source dimensions through the following equation (Gibowicz and Kijko 1994; Mendecki 1997).

$${r_s}=\frac{{{K_c}{\beta _0}}}{{2\pi {f_c}}}$$
(37)

where \({\beta _0}\) is the S-wave velocity in the vicinity of the source, \({r_s}\) is the source radius, and \({K_c}\) is a constant that depends on the source model. In mine-related seismicity studies, the fault is usually modeled as a simple circular fault (Brune 1970; Madariaga 1976). According to Brune (1970), \({K_c}\) is equal to 2.34 for S-waves. Researchers have found that both the shape and the fracture size are smaller than those in the Brune model (Gibowicz and Kijko 1994). Madariaga (1976) suggested that \({K_c}\) is equal to 2.01 for S-wave and 1.32 for P-wave. Gibowicz and Kijko (1994) thought that Madariaga’s (1976) values were more practical. In this paper, P-waves are used to solve for the corner frequency fc, so \({K_c}\) is equal to 1.32.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yang, T., Zhang, P. et al. Method for Generating a Discrete Fracture Network from Microseismic Data and its Application in Analyzing the Permeability of Rock Masses: a Case Study. Rock Mech Rock Eng 52, 3133–3155 (2019). https://doi.org/10.1007/s00603-018-1712-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1712-x

Keywords

Navigation