Skip to main content
Log in

Size Effect Analysis for the Characterization of Marcellus Shale Quasi-brittle Fracture Properties

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The fracture characterization of shale rocks requires understanding the scaling of the measured properties to enable the extrapolation from small-scale laboratory tests to field applications. In this study, the fracture properties of Marcellus shale were obtained through size effect tests. Fracture tests were conducted on three-point-bending specimens with increasing size. The test results show that the nominal strength decreases with increasing specimen size and it can be fitted well by Bažant’s size effect law. This demonstrates that shale fracture behavior deviates from classical linear elastic fracture mechanics (LEFM), and it has quasi-brittle characteristics. This implies, in turn, that the fracture toughness (or fracture energy) computed according to LEFM is size-dependent and, in general, cannot be considered a material property. Furthermore, the size effect analysis allows one to accurately identify the quasi-brittle fracture properties, namely the initial fracture energy and the effective fracture process zone length. A significant anisotropy was observed in the fracture properties determined with three principal notch orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

G :

Energy release rate

\(G_{\text {Ic}}\) :

Effective LEFM fracture energy

\(G_{\text {f}}\) :

Initial fracture energy

\(G_{\text {F}}\) :

Total fracture energy

\(K_{\text {IcA}}\) :

Apparent fracture toughness calculated using LEFM

\(K_{\text {I}}\) :

Mode I stress intensity factor

\(K_{\text {Ic}}\) :

Fracture toughness

\(K_{\text {IcA}}\) :

Apparent fracture toughness calculated using LEFM

\(\ell _{\text {FPZ}}\) :

Length of FPZ

\(c_{\text {f}}\) :

Effective FPZ length

\(\sigma (\delta )\) :

Cohesive stress as a function of crack opening \(\delta\)

\(f'_{\text {t}}\) :

Tensile strength of cohesive law

\(\beta\) :

Brittleness number

\(D_0\) :

Transitional size

\({\hat{D}}\) :

Normalized size

\(l_1\) :

Hillerborg’s characteristic length

LD, t :

Specimen length, depth, and thickness

S :

Support span

a :

Crack length

\(a_0\) :

Notch length (equal to initial crack length)

\(\alpha\) :

Dimensionless crack length

\(\alpha _0\) :

Dimensionless notch length (equal to the initial value of \(\alpha\))

P :

Applied load

\(P_{\text {u}}\) :

Peak load

\(\sigma _{N}\) :

Nominal stress

\(\sigma _{Nu}\) :

Nominal strength (nominal stress at peak load)

\(E, E'\) :

In-plane and out-of-plane modulus of material

\(\nu , \nu '\) :

In-plane and out-of-plane Poisson’s ratio of material

\(G'\) :

Out-of-plane shear modulus of material

\(E_x, E_y\) :

Elastic constants (Young’s modulus) in the specimen coordinate system

\(\nu _{xy}, \nu _{yx}\) :

Elastic constants (Poisson’s ratio) in the specimen coordinate system

\(G_{xy}\) :

Elastic constants (shear modulus) in the specimen coordinate system

\(\lambda , \rho\) :

Dimensionless elastic constants

\(E^*\) :

Effective elastic modulus

\(g, g'\) :

Dimensionless energy release rate and its derivative

\(g_0, g'_0\) :

Dimensionless energy release rate at \(\alpha _0\) and its derivative value

k :

Dimensionless stress intensity factor

\(\xi\) :

Dimensionless function

\(\sigma _0\) :

A parameter in size effect law

MAPE\(_{a_0}\) :

Notch-machining error

\(R^2\) :

Coefficient of determination

RMSE:

Root-mean-squared error

SD:

Standard deviation

SE:

Standard error

References

  • ABAQUS (2013) ABAQUS Users Manual, Ver. 6.13-1. Dassault Systmes, Providence, RI, USA

  • Aicher S (2010) Process zone length and fracture energy of spruce wood in mode-I from size effect. Wood Fiber Sci 42(2):237–247

    Google Scholar 

  • Akono AT (2016) Energetic size effect law at the microscopic scale: application to progressive-load scratch testing. J Nanomech Micromech 6(2):04016,001

    Article  Google Scholar 

  • Akono AT, Kabir P (2016) Microscopic fracture characterization of gas shale via scratch testing. Mech Res Commun 78:86–92

    Article  Google Scholar 

  • Akono AT, Kabir P (2018) Influence of geochemistry on toughening behavior of organic-rich shale. arXiv preprint arXiv:1804.10926

  • Ayatollahi M, Akbardoost J (2014) Size and geometry effects on rock fracture toughness: mode I fracture. Rock Mech Rock Eng 47(2):677–687

    Article  Google Scholar 

  • Bao G, Ho S, Suo Z, Fan B (1992) The role of material orthotropy in fracture specimens for composites. Int J Solids Struct 29(9):1105–1116

    Article  Google Scholar 

  • Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. In: Advances in applied mechanics, vol 7, Elsevier, pp 55–129

  • Barpi F, Valente S, Cravero M, Iabichino G, Fidelibus C (2012) Fracture mechanics characterization of an anisotropic geomaterial. Eng Fract Mech 84:111–122

    Article  Google Scholar 

  • Barsoum RS (1974) Application of quadratic isoparametric finite elements in linear fracture mechanics. Int J Fract 10(4):603–605

    Article  Google Scholar 

  • Bažant ZP (1984) Size effect in blunt fracture: concrete, rock, metal. J Eng Mech 110(4):518–535

    Article  Google Scholar 

  • Bažant ZP, Kazemi MT (1990a) Determination of fracture energy, process zone longth and brittleness number from size effect, with application to rock and conerete. Int J Fract 44(2):111–131

    Article  Google Scholar 

  • Bažant ZP, Kazemi MT (1990b) Size effect in fracture of ceramics and its use to determine fracture energy and effective process zone length. J Am Ceram Soc 73(7):1841–1853

    Article  Google Scholar 

  • Bažant ZP, Li Z (1996) Zero-brittleness size-effect method for one-size fracture test of concrete. J Eng Mech 122(5):458–468

    Article  Google Scholar 

  • Bažant ZP, Pfeiffer PA (1987) Determination of fracture energy from size effect and brittleness number. ACI Mater J 84(6):463–480

    Google Scholar 

  • Bažant ZP, Planas J (1997) Fracture and size effect in concrete and other quasibrittle materials, vol 16. CRC Press, Boca Raton

    Google Scholar 

  • Bažant ZP, Gettu R, Kazemi MT (1991) Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent R-curves. Int J Rock Mech Min Sci Geomech Abstr 28(1):43–51

    Article  Google Scholar 

  • Bažant ZP, Daniel IM, Li Z (1996) Size effect and fracture characteristics of composite laminates. J Eng Mater Technol 118:317

    Article  Google Scholar 

  • Bocca P, Carpinteri A, Valente S (1989) Fracture mechanics of brick masonry: size effects and snap-back analysis. Mater Struct 22(5):364–373

    Article  Google Scholar 

  • Cedolin L, Cusatis G (2008) Identification of concrete fracture parameters through size effect experiments. Cement Concr Compos 30(9):788–797

    Article  Google Scholar 

  • Chandler MR, Meredith PG, Brantut N, Crawford BR (2016) Fracture toughness anisotropy in shale. J Geophys Res Solid Earth 121(3):1706–1729

    Article  Google Scholar 

  • Chau VT, Bažant ZP, Su Y (2016) Growth model for large branched three-dimensional hydraulic crack system in gas or oil shale. Philos Trans R Soc A 374(2078):20150,418

    Article  Google Scholar 

  • Chen X, Eichhubl P, Olson JE (2017) Effect of water on critical and subcritical fracture properties of woodford shale. J Geophys Res Solid Earth 122(4):2736–2750

    Article  Google Scholar 

  • Chong KP, Smith JW (1984) Mechanics of oil shale. Elsevier, Oxford

    Google Scholar 

  • Chong KP, Kuruppu MD, Kuszmaul JS (1987) Fracture toughness determination of layered materials. Eng Fract Mech 28(1):43–54

    Article  Google Scholar 

  • Chong KP, Li VC, Einstein HH (1989) Size effects, process zone and tension softening behavior in fracture of geomaterials. Eng Fract Mech 34(3):669–678

    Article  Google Scholar 

  • Cusatis G, Schauffert EA (2009) Cohesive crack analysis of size effect. Eng Fract Mech 76(14):2163–2173

    Article  Google Scholar 

  • Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104

    Article  Google Scholar 

  • Elishakoff I (1983) Probabilistic methods in the theory of structures. Wiley, Oxford

    Google Scholar 

  • Gao Y, Liu Z, Zeng Q, Wang T, Zhuang Z, Hwang KC (2017) Theoretical and numerical prediction of crack path in the material with anisotropic fracture toughness. Eng Fract Mech 180:330–347

    Article  Google Scholar 

  • Guinea G, Pastor J, Planas J, Elices M (1998) Stress intensity factor, compliance and cmod for a general three-point-bend beam. Int J Fract 89(2):103–116

    Article  Google Scholar 

  • Hillerborg A, Modéer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773–781

    Article  Google Scholar 

  • Hubler MH, Ulm FJ (2016) Size-effect law for scratch tests of axisymmetric shape. J Eng Mech 142(12):04016,094

    Article  Google Scholar 

  • Hudson JA, Crouch SL, Fairhurst C (1972) Soft, stiff and servo-controlled testing machines: a review with reference to rock failure. Eng Geol 6(3):155–189

    Article  Google Scholar 

  • Ingraffea AR, Gunsallus KL, Beech JF, Nelson PP (1984) A short-rod based system for fracture toughness testing of rock. In: Chevron-notched specimens: testing and stress analysis, ASTM International

  • Jin Z, Li W, Jin C, Hambleton J, Cusatis G (2018) Anisotropic elastic, strength, and fracture properties of Marcellus shale. Int J Rock Mech Min Sci 109:124–137

    Article  Google Scholar 

  • Kabir P, Ulm FJ, Akono AT (2017) Rate-independent fracture toughness of gray and black kerogen-rich shales. Acta Geotech 12:1–21

    Article  Google Scholar 

  • Kataoka M, Obara Y (2015) Size effect in fracture toughness of sandstone. In: 13th ISRM international congress of rock mechanics, international society for rock mechanics

  • Khan K, Al-Shayea N (2000) Effect of specimen geometry and testing method on mixed mode I–II fracture toughness of a limestone rock from Saudi Arabia. Rock Mech Rock Eng 33(3):179–206

    Article  Google Scholar 

  • Kim KT, Bažant ZP, Yu Q (2013) Non-uniqueness of cohesive-crack stress-separation law of human and bovine bones and remedy by size effect tests. Int J Fract 181(1):67–81

    Article  Google Scholar 

  • Laubie H, Ulm FJ (2014a) Irwin s conjecture: crack shape adaptability in transversely isotropic solids. J Mech Phys Solids 68:1–13

    Article  Google Scholar 

  • Laubie H, Ulm FJ (2014b) Plane-strain crack problem in transversely isotropic solids for hydraulic fracturing applications. J Eng Mech 140(12):04014,092

    Article  Google Scholar 

  • Lee HP, Olson JE, Holder J, Gale JF, Myers RD (2015) The interaction of propagating opening mode fractures with preexisting discontinuities in shale. J Geophy Res Solid Earth 120(1):169–181

    Article  Google Scholar 

  • Li W, Jin C, Cusatis G (2016) Integrated experimental and computational characterization of shale at multiple length scales. In: New frontiers in oil and gas exploration, Springer, pp 389–434

  • Li W, Rezakhani R, Jin C, Zhou X, Cusatis G (2017) A multiscale framework for the simulation of the anisotropic mechanical behavior of shale. Int J Numer Anal Methods Geomech 41(14):1494–1522

    Article  Google Scholar 

  • Li C, Chau VT, Xie H, Bažant ZP (2018a) Recent advances in mechanics of fracking and new results on 2D simulation of crack branching in anisotropic gas or oil shale. Acta Mech 229:1–18

    Article  Google Scholar 

  • Li W, Zhou X, Carey JW, Frash LP, Cusatis G (2018b) Multiphysics lattice discrete particle modeling (M-LDPM) for the simulation of shale fracture permeability. arXiv:1803.09831

  • Lim I, Johnston I, Choi S, Boland J (1994) Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 1-mode I. Int J Rock Mech Min Sci Geomech Abstr 31(3):185–197

    Article  Google Scholar 

  • Mefford CH, Qiao Y, Salviato M (2017) Failure behavior and scaling of graphene nanocomposites. Compos Struct 176:961–972

    Article  Google Scholar 

  • Salviato M, Chau VT, Li W, Bažant ZP, Cusatis G (2016a) Direct testing of gradual postpeak softening of fracture specimens of fiber composites stabilized by enhanced grip stiffness and mass. J Appl Mech 83(11):111,003

    Article  Google Scholar 

  • Salviato M, Kirane K, Ashari SE, Bažant ZP, Cusatis G (2016b) Experimental and numerical investigation of intra-laminar energy dissipation and size effect in two-dimensional textile composites. Compos Sci Technol 135:67–75

    Article  Google Scholar 

  • Schmidt R (1977) Fracture mechanics of oil shale-unconfined fracture toughness, stress corrosion cracking, and tension test results. In: The 18th US Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association

  • Sierra R, Tran M, Abousleiman Y, Slatt R (2010) Woodford shale mechanical properties and the impacts of lithofacies. In: 44th US rock mechanics symposium and 5th US-Canada rock mechanics symposium, American Rock Mechanics Association

  • Sih GC, Paris P, Irwin GR (1965) On cracks in rectilinearly anisotropic bodies. Int J FractMech 1(3):189–203

    Google Scholar 

  • Tang T, Bažant ZP, Yang S, Zollinger D (1996) Variable-notch one-size test method for fracture energy and process zone length. Eng Fract Mech 55(3):383–404

    Article  Google Scholar 

  • Wang Y, Hu X (2017) Determination of tensile strength and fracture toughness of granite using notched three-point-bend samples. Rock Mech Rock Eng 50(1):17–28

    Article  Google Scholar 

  • Wang H, Zhao F, Huang Z, Yao Y, Yuan G (2017) Experimental study of mode-I fracture toughness for layered shale based on two ISRM-suggested methods. Rock Mech Rock Eng 50(7):1933–1939

    Article  Google Scholar 

  • Wendner R, Vorel J, Smith J, Hoover CG, Bažant ZP, Cusatis G (2015) Characterization of concrete failure behavior: a comprehensive experimental database for the calibration and validation of concrete models. Mater Struct 48(11):3603–3626

    Article  Google Scholar 

  • Yan W, Chen J, Deng J, Zhou Y, Wang K (2017) Experimental study of the mode-I fracture toughness on sichuan basin gas shale under air dried and water saturated conditions. In: 51st US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Zeng X, Wei Y (2017) Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking. J Mech Phys Solids 101:235–249

    Article  Google Scholar 

  • Zeng QD, Yao J, Shao J (2018) Numerical study of hydraulic fracture propagation accounting for rock anisotropy. J Petrol Sci Eng 160:422–432

    Article  Google Scholar 

  • Zia H, Lecampion B, Zhang W (2018) Impact of the anisotropy of fracture toughness on the propagation of planar 3D hydraulic fracture. Int J Fract 211:1–21

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Brad Sageman (Department of Earth and Planetary Sciences, Northwestern University) for providing the Marcellus shale samples used in this study and Professor Giuseppe Buscarnera (Department of Civil and Environmental Engineering, Northwestern University) for his assistance with the Mini-Tester. This work also made use of the Materials Characterization and Imaging Facility and the Center for Sustainable Engineering of Geological and Infrastructure Materials (SEGIM) at Northwestern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Cusatis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Jin, Z. & Cusatis, G. Size Effect Analysis for the Characterization of Marcellus Shale Quasi-brittle Fracture Properties. Rock Mech Rock Eng 52, 1–18 (2019). https://doi.org/10.1007/s00603-018-1570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1570-6

Keywords

Navigation