Skip to main content
Log in

Nonlinear Viscoelastic Closure of Salt Cavities

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Time-dependent hole closure is a major problem for the many cavities present in rock salt. We use analytical and numerical methods to study how cylindrical holes close under pressure loads with time. We treat salt as a viscoelastic fluid and we use an incompressible nonlinear Maxwell constitutive law to model its mechanical behavior. The viscosity is described by either a power law or an Ellis model depending on whether dislocation creep is considered alone or in combination with pressure solution. The instantaneous closure rate of a circular hole in a power law-based viscoelastic salt is fully determined analytically. A proxy for the transient closure velocity at the rim is also proposed based on a modified version of the characteristic relaxation time θ proposed by Wang et al. (Rock Mech Rock Eng 48(6):2369–2382, 2015) and it has less than 3% inaccuracy for times smaller than 3θ, irrespective of the load or salt type. We derive an analytical expression describing the instantaneous closure rate in an Ellis-based viscoelastic salt. A load threshold determines whether steady state is approached initially. The time θ is also a characteristic relaxation time for this constitutive law, and a master curve can be used to describe the evolution of the closure velocity with time. Using these characteristic values in a typical application underlines the importance of considering pressure solution, in addition to dislocation creep, when studying hole closure in rock salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A D :

Material parameter for dislocation creep

A PS :

Material parameter for pressure solution

B:

Incomplete beta function

B D :

Prefactor for dislocation creep

B P :

Prefactor for pressure solution

d :

Grain size

D :

Total rate of deformation tensor

D :

Radial component of the total rate of deformation tensor

D el :

Elastic rate of deformation tensor

D vis :

Viscous rate of deformation tensor

D PS :

Deviatoric rate of deformation tensor due to pressure solution

D D :

Deviatoric rate of deformation tensor due to dislocation creep

\(D_{{{\text{II}}}}^{*}\) :

Transition deformation rate in the Ellis model

G :

Elastic shear modulus

H :

Heaviside function

i, j :

Tensor indices going from 1 to 3

iter:

Picard iteration number

k :

Time index

K :

Elastic bulk modulus

n :

Stress exponent for dislocation creep

p :

Pressure

p w :

Well pressure

\(\overline{p}\) :

Ambient pressure

\(\Delta p\) :

Pressure difference

Q D :

Apparent activation energy for dislocation creep

Q P :

Apparent activation energy for pressure solution

r :

Radial polar coordinate

R :

Hole radius

R u :

Universal gas constant

R vis :

Size of the viscously dominated zone

t :

Time

\(\Delta t\) :

Time increment

T :

Temperature

\({T_{\text{M}}}= \mu/G\) :

Linear Maxwell relaxation time

\({T^*}\) :

Relaxation time for hole closure in a linear compressible Maxwell material

u r :

Radial displacement

v r :

Radial component of the velocity vector

v R :

Closure velocity at the rim

\(v_{{\text{R}}}^{{{\text{Ell}}}}\) :

Closure velocity at the rim in an Ellis-based Maxwell material

\(v_{{\text{R}}}^{{{\text{pl}}}}\) :

Closure velocity at the rim in a power law-based Maxwell material

\(v_{{\text{R}}}^{{{\text{Barker}}}}\) :

Closure velocity at the rim derived by Barker et al. (1994)

\(\delta\) :

Kronecker delta

\(\gamma\) :

Pseudo-steady-state time

\(\mu\) :

Linear viscosity in a linear Maxwell material

\({\mu _{{\text{app}}}}\) :

Apparent viscosity

\({\mu ^{\text{D}}}\) :

Viscosity due to dislocation creep

\(\mu _{0}^{{{\text{PS}}}}\) :

Linear viscosity due to pressure solution

\({\boldsymbol{\sigma }}\) :

Total stress tensor

\(\theta\) :

Modified characteristic relaxation time

\(\Theta\) :

Original characteristic relaxation time from Wang et al. (2015)

\({\boldsymbol{\tau }}\) :

Deviatoric stress tensor

\(\tau\) :

Radial component of the deviatoric stress tensor

\({\tau _{{\text{II}}}}\) :

Second invariant of the deviatoric stress tensor

\(\tau _{{{\text{II}}}}^{*}\) :

Transition stress in the Ellis model

References

  • Adamuszek M, Dabrowski M, Schmid DW (2016) Folder: a numerical tool to simulate the development of structures in layered media. J Struct Geol 84:85–101

    Article  Google Scholar 

  • Alkan H (2009) Percolation model for dilatancy-induced permeability of the excavation damaged zone in rock salt. Int J Rock Mech Min Sci 46(4):716–724

    Article  Google Scholar 

  • Barker JW, Feland KW, Tsao YH, 1994, Drilling long salt sections along the U.S. Gulf coast. SPE Drill Complet 9(3):185–188

    Article  Google Scholar 

  • Berest P, Brouard B (1998) A tentative classification of salts according to their creep properties. In: Proceedings of the SMRI spring meeting, New Orleans

  • Bérest P, Brouard B (2014) Long-term behavior of salt caverns. In: Proceedings of the 48th U.S. rock mechanics/geomechanics symposium. American Rock Mechanics Association, Minneapolis

  • Bérest P, Béraud JF, Gharbi H, Brouard B, DeVries K (2015) A very slow creep test on an Avery Island salt sample. Rock Mech Rock Eng 48(6):2591–2602

    Article  Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York

    Google Scholar 

  • Brouard B, Bérest P, Karimi-Jafari M (2009) The effect of small deviatoric stresses on cavern creep behavior. In: Proceedings of the 9th world symposium on salt, Beijing, pp 574–589

  • Carter NL, Hansen FD (1983) Creep of rocksalt. Tectonophysics 92(4):275–333

    Article  Google Scholar 

  • Carter NL, Horseman ST, Russell JE, Handin J (1993) Rheology of rocksalt. J Struct Geol 15(9):1257–1271

    Article  Google Scholar 

  • Cornet JS, Dabrowski M, Schmid DW (2016) Shear enhanced borehole closure. In: Proceedings of the 50th rock mechanics/geomechanics symposium. American Rock Mechanics Association, Houston

  • Cornet J, Dabrowski M, Schmid DW (2017) Long-term cavity closure in non-linear rocks. Geophys J Int 210(2):1231–1243

    Article  Google Scholar 

  • Cornet JS, Dabrowski M, Schmid DW (2018) Long term creep closure of salt cavities. Int J Rock Mech Min Sci 103:96–106

    Article  Google Scholar 

  • Cristescu ND (1993) A general constitutive equation for transient and stationary creep of rock salt. Int J Rock Mech Min Sci Geomech Abstr 30(2):125–140

    Article  Google Scholar 

  • Cristescu ND, Hunsche U (1997) Time effects in rock mechanics. Wiley, Chichester

    Google Scholar 

  • da Costa AM, Amaral CS, Poiate E, Pereira AMB, Martha LF, Gattass M, Roehl D (2011) Underground storage of natural gas and CO2 in salt caverns in deep and ultra-deep water offshore Brazil. In: Proceedings of the 12th international congress on rock mechanics—ISRM, Beijing, pp 1659–1664

  • Djizanne H, Berest P, Brouard B (2014) The mechanical stability of a salt cavern used for compressed air energy storage (CAES). In: Proceedings of the SMRI spring conference, San Antonio

  • Drury MR, Urai JL (1990) Deformation-related recrystallization processes. Tectonophysics 172(3–4):235–253

    Article  Google Scholar 

  • Dusseault M, Maury V, Sanfilippo F, Santarelli F (2004) Drilling through salt: constitutive behavior and drilling strategies. In: Proceedings of the 6th North America rock mechanics symposium, Houston

  • Fossum AF, Fredrich JT (2002) Salt mechanics primer for near-salt and sub-salt deepwater Gulf of Mexico field developments. SANDIA Nat Lab, Albuquerque

    Book  Google Scholar 

  • Fredrich JT, Fossum AF, Hickman RJ (2007) Mineralogy of deepwater Gulf of Mexico salt formations and implications for constitutive behavior. J Petrol Sci Eng 57:(3–4):354–374

    Article  Google Scholar 

  • Gnirk PF, Johnson RE (1964) The deformational behavior of a circular mine shaft situated. A viscoelastic medium under hydrostatic stress. American Rock Mechanics Association, Alexandria

    Google Scholar 

  • Günther R-M, Salzer K, Minkley W, Popp T (2015) Impact of tensile stresses and tensile fractures in rock salt on the evolution of the EDZ—capability of numerical modeling

  • Heusermann S, Rolfs O, Schmidt U (2003) Nonlinear finite-element analysis of solution mined storage caverns in rock salt using the LUBBY2 constitutive model. Comput Struct 81(8–11):629–638

    Article  Google Scholar 

  • Hou Z, Wundram L, Meyer R, Schmidt M, Schmitz S, Were P (2012) Development of a long-term wellbore sealing concept based on numerical simulations and in situ-testing in the Altmark natural gas field. Environ Earth Sci 67(2):395–409

    Article  Google Scholar 

  • Hunsche U, Hampel A, 1999, Rock salt—the mechanical properties of the host rock material for a radioactive waste repository. Eng Geol 52(3–4):271–291

    Article  Google Scholar 

  • Jaeger JC, Cook NGW, Zimmerman R (2007) Fundamentals of rock mechanics. Wiley, New York

    Google Scholar 

  • Karimi-Jafari M, Bérest P, Brouard B, Van Sambeek L (2006) Transient behaviour of salt caverns. In: Proceedings 6th conference on the mechanical behavior of salt, Hannover

  • Kim CM (1988) Field measurement of borehole closure across salt formation: implementation to well cementing. In: Proceedings of the SPE annual tech conf and exhibition. Society of Petroleum Engineers, Houston

  • Kirby SH, Kronenberg AK (1987) Rheology of the lithosphere: selected topics. Rev Geophys 25(6):1219–1244

    Article  Google Scholar 

  • Li S-Y, Urai JL (2016) Rheology of rock salt for salt tectonics modeling. Pet Sci 13(4):712–724

    Article  Google Scholar 

  • Liu X, Birchwood R, Hooyman PJ (2011) A new analytical solution for wellbore creep in soft sediments and salt. In: Proceedings 45th US rock mechanics/geomechanics symposium. American Rock Mechanics Association, San Francisco

  • Lord AS, Kobos PH, Klise GT, Borns DJ (2011) A life cycle cost analysis framework for geologic storage of hydrogen: a user’s tool. Sandia Nat Lab, Albuquerque

    Google Scholar 

  • Mackay F, Inoue N, da Fontoura SAB, Botelho F (2008) Analyzing geomechanical effects while drilling sub salt wells through numerical modeling. In: Proceedings of the SPE Indian oil and gas technical conference and exhibition. Society of Petroleum Engineers, Mumbai

  • Munson DE (1997) Constitutive model of creep in rock salt applied to underground room closure. Int J Rock Mech Min Sci 34(2):233–247

    Article  Google Scholar 

  • Orlic B, Buijze L (2014) Numerical modeling of wellbore closure by the creep of rock salt caprocks. In: Proceedings of the 48th US rock mech/geomech symposium. American Rock Mechanics Association, Minneapolis

  • Peach CJ, Spiers CJ, Trimby PW (2001) Effect of confining pressure on dilatation, recrystallization, and flow of rock salt at 150 °C. J Geophys Res: Solid Earth 106(B7):13315–13328

    Article  Google Scholar 

  • Poiate E, Maia A, Falcao JL (2006) Well design for drilling through thick evaporite layers. In: Proceedings of the IADC/SPE drilling conference. Society of Petroleum Engineers, Miami

  • Preece DS (1987) Borehole creep closure measurements and numerical calculations at the Big Hill, Texas SPR storage site. In: Proceedings of the 6th ISRM congress. International Society for Rock Mechanics, Montreal, pp 219–224

  • Ranalli G (1995) Rheology of the Earth, Springer, Amsterdam

    Google Scholar 

  • Rutter EH (1983) Pressure solution in nature, theory and experiment. J Geol Soc 140(5):725

    Article  Google Scholar 

  • Schulze O, Popp T, Kern H (2001) Development of damage and permeability in deforming rock salt. Eng Geol 61(2–3):163–180

    Article  Google Scholar 

  • Senseny PE (1990) Assessment of using borehole-closure data to determine the constitutive behavior of salt. Int J Numer Anal Methods Geomech 14(2):125–130

    Article  Google Scholar 

  • Senseny PE, Hansen FD, Russell JE, Carter NL, Handin JW (1992) Mechanical behaviour of rock salt: phenomenology and micromechanisms. Int J Rock Mech Min Sci Geomech 29(4):363–378

    Article  Google Scholar 

  • Spiers C, Carter NL (1996) Microphysics of rocksalt flow in nature. In: Proceedings of 4th conference on the mechanical behavior of salt. Pennsylvania State University, pp 115–128

  • Spiers CJ, Schutjens PMTM., Brzesowsky RH, Peach CJ, Liezenberg JL, Zwart HJ (1990) Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution. Geol Soc Lond Spec Publ 54(1):215–227

    Article  Google Scholar 

  • Ter Heege J (2002) Relationship between dynamic recrystallization, grain size distribution and rheology. Utrecht University, Utrecht

    Google Scholar 

  • Ter Heege J, De Bresser JHP, Spiers CJ (2005a) Rheological behaviour of synthetic rocksalt: the interplay between water, dynamic recrystallization and deformation mechanisms. J Struct Geol 27(6):948–963

    Article  Google Scholar 

  • Ter Heege JH, De Bresser JHP, Spiers CJ (2005b) Dynamic recrystallization of wet synthetic polycrystalline halite: dependence of grain size distribution on flow stress, temperature and strain. Tectonophysics 396(1–2):35–57

    Article  Google Scholar 

  • Turcotte DL, Schubert G (2014) Geodynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Urai JL, Spiers CJ (2007) The effect of grain boundary water on deformation mechanisms and rheology of rocksalt during long-term deformation. In: Proceedings of the sixth conference on mechanical behavior of salt, Hannover, pp 149–158

  • van Keken PE, Spiers CJ, van den Berg AP, Muyzert EJ (1993) The effective viscosity of rocksalt: implementation of steady-state creep laws in numerical models of salt diapirism. Tectonophysics 225(4):457–476

    Article  Google Scholar 

  • van Heekeren H, Bakker T, Duquesnoy T, de Ruiter V, 2009, Abandonment of an extremely deep Cavern at Frisia Salt. In: Proceedings of the SMRI spring conference, Krakow

  • Wang G, Guo K, Christianson M, Konietzky H (2011) Deformation characteristics of rock salt with mudstone interbeds surrounding gas and oil storage cavern. Int J Rock Mech Min Sci 48(6):871–877

    Article  Google Scholar 

  • Wang L, Bérest P, Brouard B (2015) Mechanical behavior of salt caverns: closed-form solutions vs numerical computations. Rock Mech Rock Eng 48(6):2369–2382

    Article  Google Scholar 

  • Wawersik WR, Zeuch DH, 1986, Modeling and mechanistic interpretation of creep of rock salt below 200 °C. Tectonophysics 121(2):125–152

    Article  Google Scholar 

  • Westbrook E (2016) Department of energy operational readiness review for the Waste Isolation Pilot Plan. US Dep of Energy

  • Xie J, Tao G (2013) Modeling and analysis of salt creep deformations in drilling applications. In: Proceedings of the SIMULIA community conference, Vienna

  • Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Zong J, Stewart R, Dyaur N (2016) Elastic properties of salt: Ultrasonic lab measurements and the Gulf of Mexico well log analysis, SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists, pp 3333–3337

Download references

Acknowledgements

We would like to thank the University of Oslo and more precisely the PGP group for their support. This work is part of the Tight Rocks research program funded by Statoil ASA at the University of Oslo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan S. Cornet.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Steady-State Closure Velocity for an Incompressible Ellis Fluid

From Eq. (15)

$$\frac{1}{2}\left[ \sigma \right]_{r}^{\infty }+\int\limits_{r}^{\infty } {\frac{\tau }{r}{\text{d}}r} =0.$$
(47)

Making the change of variable \(D= - {v_R}{R \mathord{\left/ {\vphantom {R {{r^2}}}} \right. \kern-0pt} {{r^2}}}\), with

$$\frac{{{\text{d}}r}}{r}= - \frac{1}{2}\frac{{{\text{d}}D}}{D}.$$
(48)

We get

$$\left( { - \bar {p} - \sigma } \right)+\int\limits_{0}^{{D(r)}} {\frac{\tau }{D}} {\text{d}}D=0.$$
(49)

For an Ellis model

$$D=\frac{\tau }{{{A_{{\text{PS}}}}}}+\frac{{{\tau ^n}}}{{{A_{\text{D}}}}}.$$
(50)

So

$${\text{d}}D=\left( {\frac{1}{{{A_{{\text{PS}}}}}}+n\frac{{{\tau ^{n - 1}}}}{{{A_{\text{D}}}}}} \right){\text{d}}\tau .$$
(51)

Making another change of variables leads to:

$$\sigma = - \;\bar {p}+\int\limits_{0}^{{\tau \left( {D(r)} \right)}} {\frac{{\frac{\tau }{{{A_{{\text{PS}}}}}}+n\frac{{{\tau ^n}}}{{{A_{\text{D}}}}}}}{{\frac{\tau }{{{A_{{\text{PS}}}}}}+\frac{{{\tau ^n}}}{{{A_{\text{D}}}}}}}{\text{d}}\tau } ,$$
(52)

which can be solved as:

$$\sigma = - \bar {p}+\tau \left( {n - \left( {n - 1} \right){}_{2}{F_1}\left( {1,\frac{1}{{n - 1}};\frac{n}{{n - 1}}; - \frac{{{A_{{\text{PS}}}}}}{{{A_{\text{D}}}}}{\tau ^{n - 1}}} \right)} \right),$$
(53)

where \({}_{2}{F_1}\) is Gauss’s hypergeometric function. Using Euler’s hypergeometric transformation, and the relationship linking \({}_{2}{F_1}\) with the beta incomplete function B, we get:

$$\sigma = - \;\bar {p}+\tau \left( {n - \frac{1}{{{{\left( {\frac{{{A_{{\text{PS}}}}}}{{{A_{\text{D}}}}}} \right)}^{\frac{1}{{n - 1}}}}\tau }}B\left( {\frac{{\frac{{{A_{{\text{PS}}}}}}{{{A_{\text{D}}}}}{\tau ^{n - 1}}}}{{\frac{{{A_{{\text{PS}}}}}}{{{A_{\text{D}}}}}{\tau ^{n - 1}}+1}};\frac{1}{{n - 1}},\frac{{n - 2}}{{n - 1}}} \right)} \right),$$
(54)

which is valid for n > 2. Using the boundary condition at r = R and that \(\tau _{{{\text{II}}}}^{*}={\left( {{{{A_{\text{D}}}} \mathord{\left/ {\vphantom {{{A_{\text{D}}}} {{A_{{\text{PS}}}}}}} \right. \kern-0pt} {{A_{{\text{PS}}}}}}} \right)^{{1 \mathord{\left/ {\vphantom {1 {n - 1}}} \right. \kern-0pt} {n - 1}}}}\):

$$\Delta p+\tau \left( {n - \frac{{\tau _{{{\text{II}}}}^{*}}}{\tau }B\left( {\frac{1}{{1+{{\left( {\frac{{\tau _{{{\text{II}}}}^{*}}}{\tau }} \right)}^{n - 1}}}};\frac{1}{{n - 1}},\frac{{n - 2}}{{n - 1}}} \right)} \right)=0.$$
(55)

1.2 Initial Closure Velocity for an Incompressible Nonlinearly Viscoelastic Material Having a Power Law Viscosity Model

As established in Eq. (26):

$$\frac{{{v_{\text{R}}}}}{R}= - \int\limits_{R}^{\infty } {\frac{1}{{{\mu _{{\text{app}}}}}}\frac{\tau }{r}{\text{d}}r} .$$
(56)

For a power law viscosity model this becomes:

$$\frac{{{v_{\text{R}}}}}{R}= - \;\frac{2}{{{{\rm A}_{\text{D}}}}}\int\limits_{R}^{\infty } {\frac{{\operatorname{sgn} (\tau ){{\left| \tau \right|}^n}}}{r}{\text{d}}r} .$$
(57)

In \(t=0+\), the stress is elastic: \(\tau = - \;\Delta p{\left( {\frac{R}{r}} \right)^2},\)

$$\frac{{{v_{\text{R}}}(t=0+)}}{R}=\operatorname{sgn} (\Delta p)\frac{{2{{\left| {\Delta p} \right|}^n}{R^{2n}}}}{{{A_{\text{D}}}}}\int\limits_{R}^{\infty } {\frac{1}{{{r^{2n+1}}}}{\text{d}}r} ,$$
(58)
$$\frac{{{v_{\text{R}}}(t=0+)}}{R}=\frac{{\operatorname{sgn} (\Delta p)}}{{{A_{\text{D}}}}}\frac{{{{\left| {\Delta p} \right|}^n}}}{n}.$$
(59)

1.3 Initial Closure Acceleration for an Incompressible Nonlinearly Viscoelastic Material Having a Power Law Viscosity Model

Assuming closure is occurring, i.e., \(\Delta p<0\), and deriving Eq. (56) according to time gives

$$\frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{{v_{\text{R}}}}}{R}} \right)= - \frac{2}{{{A_{\text{D}}}}}\int\limits_{R}^{\infty } {\frac{{n{\tau ^{n - 1}}\dot {\tau }}}{r}{\text{d}}r} ,$$
(60)

but from the constitutive law we know that:

$$\dot {\tau }=2GD - \frac{G}{{{\mu _{{\text{app}}}}}}\tau ,$$
(61)

so

$$\frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{{v_{\text{R}}}}}{R}} \right)= - \frac{2}{{{A_{\text{D}}}}}\int\limits_{R}^{\infty } {\frac{{n{\tau ^{n - 1}}}}{r}\left( {2GD - \frac{G}{{{\mu _{{\text{app}}}}}}\tau } \right){\text{d}}r} ,$$
(62)
$$\frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{{v_{\text{R}}}}}{R}} \right)=\frac{{4nGR{v_{\text{R}}}}}{{{A_{\text{D}}}}}\int\limits_{{\text{R}}}^{\infty } {\frac{1}{{{r^3}}}\frac{1}{{{\tau ^{1 - n}}}}{\text{d}}r} +\frac{{4nG}}{{A_{{\text{D}}}^{2}}}\int\limits_{R}^{\infty } {\frac{1}{r}\frac{1}{{{\tau ^{1 - 2n}}}}{\text{d}}r} .$$
(63)

In \(t=0+\), the stress is elastic: \(\tau = - \Delta p{\left( {\frac{R}{r}} \right)^2},\)

$$\frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{{v_{\text{R}}}}}{R}} \right)(t=0+)=\frac{{2G}}{{{A_{\text{D}}}}}\left( {{{\left| {\Delta p} \right|}^{n - 1}}\frac{{{v_{\text{R}}}}}{R} - \frac{n}{{(2n - 1)}}\frac{{{{\left| {\Delta p} \right|}^{2n - 1}}}}{{{A_{\text{D}}}}}} \right).$$
(64)

Initially, \(\frac{{{v_{\text{R}}}}}{R}= - \frac{1}{{{A_{\text{D}}}}}\frac{{{{\left| {\Delta p} \right|}^n}}}{n}\) so:

$$\frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{{v_{\text{R}}}}}{R}} \right)(t=0+)=\frac{{2G}}{{\left| {\Delta p} \right|}}\frac{{n{{\left( {n - 1} \right)}^2}}}{{2n - 1}}\frac{{v_{{\text{R}}}^{2}}}{{{R^2}}}.$$
(65)

1.4 Initial Closure Velocity for an Incompressible Nonlinearly Viscoelastic Material Having an Ellis Viscosity Model

As established in Eq. (26):

$$\frac{{{v_{\text{R}}}}}{R}= - \int\limits_{R}^{\infty } {\frac{1}{{{\mu _{{\text{app}}}}}}\frac{\tau }{r}{\text{d}}r,}$$
(66)

so for an Ellis viscosity model we have:

$$\frac{{{v_{\text{R}}}}}{R}= - \int\limits_{R}^{\infty } {2\left( {\frac{1}{{{A_{{\text{PS}}}}}}+\frac{{{{\left| \tau \right|}^{n - 1}}}}{{{A_{\text{D}}}}}} \right)\frac{\tau }{r}{\text{d}}r.}$$
(67)

At \(t=0+\), \(\tau = - \Delta p{\left( {\frac{R}{r}} \right)^2},\)

$$\frac{{{v_{\text{R}}}(t=0+)}}{R}=\frac{1}{{{A_{{\text{PS}}}}}}\Delta p+\operatorname{sgn} (\Delta p)\frac{1}{{{A_{\text{D}}}}}\frac{{{{\left| {\Delta p} \right|}^n}}}{n}.$$
(68)

1.5 Initial Closure Acceleration for an Incompressible Nonlinearly Viscoelastic Material Having an Ellis Viscosity Model

Assuming closure is occurring, i.e., \(\Delta p<0\), and deriving Eq. (67) according to time gives

$$\frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{{v_{\text{R}}}}}{R}} \right)= - \frac{2}{{{A_{{\text{PS}}}}}}\int\limits_{R}^{\infty } {\frac{{\dot {\tau }}}{r}{\text{d}}r} - \frac{2}{{{A_{\text{D}}}}}\int\limits_{R}^{\infty } {\frac{{n{\tau ^{n - 1}}\dot {\tau }}}{r}{\text{d}}r} ,$$
(69)
$$\dot {\tau }=2GD - \frac{G}{{{\mu _{{\text{app}}}}}}\tau ,$$
(70)
$$\frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{{v_{\text{R}}}}}{R}} \right)= - \frac{2}{{{A_{{\text{PS}}}}}}\int\limits_{R}^{\infty } {\frac{1}{r}\left( {2GD - \frac{G}{{{\mu _{{\text{app}}}}}}\tau } \right){\text{d}}r} - \frac{2}{{{A_{\text{D}}}}}\int\limits_{R}^{\infty } {\frac{{n{\tau ^{n - 1}}}}{r}\left( {2GD - \frac{G}{{{\mu _{{\text{app}}}}}}\tau } \right){\text{d}}r.}$$
(71)

Using that \(D= - \;{v_{\text{R}}}{R \mathord{\left/ {\vphantom {R {{r^2}}}} \right. \kern-0pt} {{r^2}}}\) and Eq. (10)

$$\begin{aligned} \frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{{v_{\text{R}}}}}{R}} \right)= & \frac{{4{v_{\text{R}}}RG}}{{{A_{{\text{PS}}}}}}\int\limits_{R}^{\infty } {\frac{1}{{{r^3}}}{\text{d}}r} +\frac{{4n{v_{\text{R}}}RG}}{{{A_{\text{D}}}}}\int\limits_{R}^{\infty } {\frac{{{\tau ^{n - 1}}}}{{{r^3}}}{\text{d}}r} \\ & \quad +\frac{{4G}}{{{A_{{\text{PS}}}}{A_{{\text{PS}}}}}}\int\limits_{R}^{\infty } {\frac{\tau }{r}{\text{d}}r} +\frac{{4G}}{{{A_{{\text{PS}}}}{A_{\text{D}}}}}\int\limits_{R}^{\infty } {\frac{{{\tau ^n}}}{r}{\text{d}}r} \\ & \quad +\frac{{4nG}}{{{A_{\text{D}}}{A_{{\text{PS}}}}}}\int\limits_{R}^{\infty } {\frac{{{\tau ^n}}}{r}{\text{d}}r} +\frac{{4nG}}{{{A_{\text{D}}}{A_{\text{D}}}}}\int\limits_{R}^{\infty } {\frac{{{\tau ^{2n - 1}}}}{r}{\text{d}}r} . \\ \end{aligned}$$
(72)

At \(t=0+,\) \(\tau = - \Delta p{\left( {\frac{R}{r}} \right)^2},\)

$$\begin{aligned} \frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{{v_R}}}{R}} \right)(t=0+)= & \frac{{4{v_{\text{R}}}RG}}{{{A_{{\text{PS}}}}}}\int\limits_{R}^{\infty } {\frac{1}{{{r^3}}}{\text{d}}r} +\frac{{4n{v_{\text{R}}}RG}}{{{A_{\text{D}}}}}{\left( { - \Delta p} \right)^{n - 1}}{R^{2n - 2}}\int\limits_{R}^{\infty } {\frac{1}{{{r^{2n+1}}}}{\text{d}}r} \\ & \quad +\frac{{4G}}{{{A_{{\text{PS}}}}{A_{{\text{PS}}}}}}\left( { - \Delta p} \right){R^2}\int\limits_{R}^{\infty } {\frac{1}{{{r^3}}}{\text{d}}r} +\frac{{4G}}{{{A_{{\text{PS}}}}{A_{\text{D}}}}}{\left( { - \Delta p} \right)^n}{R^{2n}}\int\limits_{R}^{\infty } {\frac{1}{{{r^{2n+1}}}}{\text{d}}r} \\ & \quad +\frac{{4nG}}{{{A_{\text{D}}}{A_{{\text{PS}}}}}}{\left( { - \Delta p} \right)^n}{R^{2n}}\int\limits_{R}^{\infty } {\frac{1}{{{r^{2n+1}}}}{\text{d}}r} +\frac{{4nG}}{{{A_{\text{D}}}{A_{\text{D}}}}}{\left( { - \Delta p} \right)^{2n - 1}}{R^{4n - 2}}\int\limits_{R}^{\infty } {\frac{1}{{{r^{4n - 1}}}}{\text{d}}r} , \\ \end{aligned}$$
(73)

so, finally

$$\begin{aligned} \frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{{v_R}}}{R}} \right)(t=0+)&= 2G\left( {\frac{1}{{{A_{{\text{PS}}}}}}+\frac{1}{{{A_{\text{D}}}}}{{\left( { - \Delta p} \right)}^{n - 1}}} \right)\frac{{{v_R}}}{R} \\ & \quad +2G\left( { - \Delta p} \right)\left( {\frac{1}{{{A_{{\text{PS}}}}{A_{{\text{PS}}}}}}+\frac{1}{{{A_{{\text{PS}}}}{A_{\text{D}}}}}\frac{{{{\left( { - \Delta p} \right)}^{n - 1}}}}{n}+\frac{1}{{{A_{\text{D}}}{A_{{\text{PS}}}}}}{{\left( { - \Delta p} \right)}^{n - 1}}+\frac{n}{{2n - 1}}\frac{1}{{{A_{\text{D}}}{A_{\text{D}}}}}{{\left( { - \Delta p} \right)}^{2n - 2}}} \right). \\ \end{aligned}$$
(74)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornet, J.S., Dabrowski, M. Nonlinear Viscoelastic Closure of Salt Cavities. Rock Mech Rock Eng 51, 3091–3109 (2018). https://doi.org/10.1007/s00603-018-1506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1506-1

Keywords

Navigation