Skip to main content
Log in

Fracture Toughness Effects in Geomaterial Solid Particle Erosion

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Effects of fracture toughness on the impingement of geomaterials (rocks and cementitious composites) by quartz particles at velocities between 40 and 140 m/s are investigated experimentally and analytically. If schist is excluded, relative erosion (in g/g) reduces according to a reverse power function if fracture toughness increases. The power exponent depends on impingement velocity, and it varies between −0.64 and −1.33. Lateral cracking erosion models, developed for brittle materials, deliver too high values for relative material erosion. This discrepancy is partly attributed to stress rate effects. Effects of R-curve behavior seem to be marginal. An integral approach E R = K 1 · E PR  + (1 − K 1) · E LR is introduced, which considers erosion due to plastic deformation and lateral cracking. A transition function \(K_{1} = f\left( {K_{\text{Ic}}^{12/4} /\sigma_{\text{C}}^{23/4} } \right)\) is suggested in order to classify geomaterials according to their response against solid particle impingement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

b :

Distribution shape parameter

c :

Crack length

c I :

Material parameter

D :

Fracture toughness exponent

d P :

Erodent particle diameter

E K :

Kinetic energy erodent particle

E M :

Young’s modulus target material

E P :

Young’s modulus erodent material

E R :

Relative erosion

H M :

Hardness target material

k :

Elastic parameter

K 1 :

Erosion parameter

KIc :

Fracture toughness target material

m :

R-curve parameter

M M :

Eroded target mass

M P :

Erodent particle mass

\(\dot{M}_{\text{P}}\) :

Erodent mass flow rate

n :

Stress rate parameter

P C :

Contact force

r B :

Contact radius

r P :

Particle radius

t E :

Exposure time

t P :

Contact time

v P :

Erodent particle velocity

β :

Indenter angle

χ :

Transition parameter

Γ Ic :

Critical energy release rate

λ :

Distribution scale parameter

ν M :

Poisson’s ratio target material

ν P :

Poisson’s ratio erodent material

ρ P :

Density erodent material

ρ M :

Density target material

\(\dot{\sigma }\) :

Stress rate

σ C :

Compressive strength target material

σ P :

Contact stress

σ Y :

Yield stress

References

  • Amaral PM, Fernandes JC, Rosa LG (2009) Wear mechanisms in materials with granitic textures—applicability of a lateral crack system model. Wear 266:753–764

    Article  Google Scholar 

  • Bertram B (2008) Bruchenergie laufender Risse in Gestein. Dissertation, Bochum: Ruhr-Universität: 1988

  • Beste U, Lundvall A, Jacobson S (2004) Micro-scratch evaluation of rock types—a means to comprehend rock drill wear. Tribol Int 37:203–210

    Article  Google Scholar 

  • Blange JJ, van Nieuwkoop P (2011) Method of drilling and jet drilling system. Interns Patent Application, WO 2011/076845 A1, 30 June 2011

  • Breder K, Giannakopoulos AE (1990) Erosive wear in Al2O3 exhibiting Mode-I R-curve behavior. Ceram Eng Sci Proc 11:1046–1060

    Article  Google Scholar 

  • Breder K, De Portu G, Ritter JE, Fabbriche DD (1988) Erosion damage and strength degradation of zirconia-toughened alumina. J Amer Ceram Soc 71:770–775

    Article  Google Scholar 

  • Bujis M (1994) Erosion of glass as modeled by indentation theory. J Amer Ceram Soc 77:1676–1678

    Article  Google Scholar 

  • Bushby AJ, Swain MV (1995) Spherical indentations as a means for investigating the plastic deformation of ceramics. In: Bradt RC et al (eds) Plastic Deformation of Ceramics. Plenum Press, New York, pp 161–172

    Chapter  Google Scholar 

  • Chaudri MM, Walley SM (1978) A high-speed photographic investigation of the impact damage in sodalime and borosilicate glasses by small glass and steel spheres. In: Bradt RC et al (eds) Fracture Mechanics of Ceramics, vol 3. Plenum Press, New York, pp 349–364

    Google Scholar 

  • Chen X, Hutchinson JW, Evans AG (2005) The mechanics of indentation induced lateral cracking. J Amer Ceram Soc 88(5):1233–1238

    Article  Google Scholar 

  • Chen P, Cui J, Zhou X (2013) Research on effects of pressure loading on rock lateral cracks under confining pressure. Adv Mater Res 838–841:850–853

    Google Scholar 

  • Cui M, Zhay Y, Ji G (2011) Experimental study of rock breaking effect of steel particles. J Hydrodyn 23:241–246

    Article  Google Scholar 

  • Dai F, Chen R, Iqbal MJ, Xia K (2010) Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters. Int J Rock Mech Min Sci 47:606–613

    Article  Google Scholar 

  • Du Y, Wang R, Ni H, Ma L, Zhang S, Han Z (2011) Study on the rock-breaking performance of particles jet drilling technology. Electr J Geomech Engng 16:431–440

    Google Scholar 

  • Du Y, Wang R, Ni H (2012) Feasibility of particle jet as a drilling medium for the development of deep complicated oil-gas reservoir. Adv Mater Res 361–363:465–468

    Google Scholar 

  • Erarslan N, Williams DJ (2012) The damage mechanism of rock fatigue and its relationship to the fracture toughness of rocks. Int J Rock Mech Min Sci 56:15–26

    Google Scholar 

  • Evans AG, Gulden ME, Rosenblatt ME (1978) Impact damage in brittle materials in the elastic–plastic response regime. Proc Roy Soc Lond A 361:343–356

    Article  Google Scholar 

  • Fischer-Cipps AC (2007) Introduction to Contact Mechanics. Springer, New-York

    Book  Google Scholar 

  • Gordon AT, Greg GG (2008) Particle drilling alters standard rock-cutting approach. World Oil 229(6):37–44

    Google Scholar 

  • Gotzmann J (1989) Modellierung des Strahlverschleißes an keramischen Werkstoffen. Schmierungstechnik 20:324–329

    Google Scholar 

  • Harder NJ, Curlett HB, Padgett O, Hazel B (2010) Impact excavation system and method with injection system. United States Patent, US 7,793,741 B2, 14 Sep 2010

  • Heßling M (1988) Grundlagenuntersuchungen über das Schneiden von Gestein mit abrasiven Höchstdruckwasserstrahlen. Dissertation, Aachen, RWTH Aachen

  • Huang H, Damjanac B, Detournay E (1998) Normal wedge indentation in rocks with lateral confinement. Rock Mech Rock Engng 31(2):81–94

    Article  Google Scholar 

  • Hutchings IM (1977) Strain rate effects in microparticle impact. J Phys D Appl Phys 10:L179–L184

    Article  Google Scholar 

  • Igrashi S, Bentur A, Mindess S (1996) Microhardness testing of cementitious materials. Advn Cem Bas Mat 4:48–57

    Article  Google Scholar 

  • Iqbal MJ, Mohanty B, Xia K (2008) Dynamic tensile strength and mode-I fracture toughness in granitic rocks. In: Proceedings 11th International Congress. Exposition, Orlando; Society for Experimental Mechanics 2–5 June 2008

  • Jung SJ, Prisbrey K, Wu G (1994) Prediction of rock hardness and drillability using acoustic signatures during indentation. Int J Rock Mech Min Sci Geomech Abstr 31:561–567

    Article  Google Scholar 

  • Kleis I, Kulu P (2008) Solid Particle Erosion. Springer, London

    Google Scholar 

  • Knight CG, Swain MV, Chaudri MM (1977) Impact of small steel spheres on glass surfaces. J Mater Sci 12:1573–1586

    Article  Google Scholar 

  • Lambe TW (1969) Soil Mechanics. John Wiley, New York

    Google Scholar 

  • Lambert DE, Ross CA (2000) Strain rate effects on dynamic fracture and strength. Int J Impact Eng 24:985–998

    Article  Google Scholar 

  • Marshall DB, Lawn BR, Evans AG (1982) Elastic/plastic indentation damage in ceramics: the lateral crack system. J Amer Ceram Soc 65:561–566

    Article  Google Scholar 

  • Maurer WCJ, Rinehart JS (1960) Impact crater formation in rock. J Appl Phys 31:1247–1252

    Article  Google Scholar 

  • Momber AW (2003a) Cavitation damage to geomaterials in a flowing system. J Mater Sci 38:747–757

    Article  Google Scholar 

  • Momber AW (2003b) An SEM-study of high-speed hydrodynamic erosion of cementitious composites. Compos B 34:135–142

    Article  Google Scholar 

  • Momber AW (2004) Damage to rocks and cementitious materials from solid impact. Rock Mech Rock Eng 37:57–82

    Article  Google Scholar 

  • Momber AW (2005) Hydrodemolition of concrete surfaces and reinforced concrete. Elsevier, London

    Google Scholar 

  • Momber AW (2008) Blast Cleaning Technology. Springer, London

    Book  Google Scholar 

  • Momber AW (2013) Erosion of schist due to solid particle impingement. Rock Mech Rock Eng 46:849–857

    Article  Google Scholar 

  • Momber AW (2014) Effects of target material properties on solid particle erosion of geomaterials at different impingement velocities. Wear 319:69–83

    Article  Google Scholar 

  • Momber AW, Kovacevic R (1998) Principles of Abrasive Water Jet Machining. Springer, London

    Book  Google Scholar 

  • Momber AW, Budidharma E, Tjo R (2011) The separation of reinforced cementitious composites with a stream-line cutting tool. Res Conserv Recycl 55:507–514

    Article  Google Scholar 

  • Murakami Y (1987) Stress Intensity Handbook, vol 1. Pergamon Press, Oxford, pp 13–15

    Google Scholar 

  • Murugesh L, Srinivasan S, Scattergood RO (1991) Models and material properties for erosion of ceramics. J Mater Eng 13:55–61

    Article  Google Scholar 

  • Ouchterlony F (1982) Review on fracture toughness testing of rock. SM Archives 71:131–211

    Google Scholar 

  • Ouchterlony F (1990) Fracture toughness testing of rock with core based specimens. Eng Fract Mech 35:351–366

    Article  Google Scholar 

  • Pickering EG, Deshpande VS (2014) The ballistic impact of ceramics—an investigation into the effects of confinement and material properties. In: 4th International Conference on Impact Loading of Lightweight Structures. Cape Town, SA; 12–16 Jan 2014

  • Ritter JE (1985) Erosion damage in structural ceramics. Mater Sci Eng 71:194–201

    Article  Google Scholar 

  • Ritter JE, Strzepa P, Jakus K, Rosenfeld L, Buckman KJ (1984) Erosion damage in glass and alumina. J Amer Ceram Soc 67:769–774

    Article  Google Scholar 

  • Rogers CO, Pang SS, Kumano A, Goldsmith W (1986) Response of dry- and liquid-filled porous rocks to static and dynamic loading by variously-shaped projectiles. Rock Mech 19:235–260

    Article  Google Scholar 

  • Routbort JL, Matzke HJ (1983) On the correlation between solid-particle erosion and fracture parameters in SiC. J Mater Sci 18:1491–1496

    Article  Google Scholar 

  • Ruff AW, Wiederhorn SM (1979) Erosion by solid particle impact. In: Preece CM (ed) Erosion. Academic Press, New York, pp 69–126

    Google Scholar 

  • Schmidt RA, Lutz TJ (1979) KIc and JIc of Westerley granite—effects of thickness and in-plane dimensions. In: Freiman SW (ed) Fracture Mechanics Applied to Brittle Materials. ASTM, New York, pp 166–182

    Chapter  Google Scholar 

  • Slikkerveer PJ, Verspui M, Skerka E (1999) Erosion and damage by hard spherical particles on glass. J Amer Ceram Soc 82:3173–3178

    Article  Google Scholar 

  • Szwedzicki T (1998) Indentation hardness testing of rock. Int J Rock Mech Min Sci 35:825–829

    Article  Google Scholar 

  • Tabor D (1951) The hardness of metals. Clarendon Press, Oxford

    Google Scholar 

  • Tandon S, Faber KT (1999) Effects of loading rate on the fracture of cementitious materials. Cem Concr Res 29:397–406

    Article  Google Scholar 

  • Tibbitts GA, Galloway G, Vuyk A, Terry J (2009) Methods of using a particle impact drilling system for removing near-borehole damage, milling objects in a wellbore, under reaming, coring, perforating, assisting, annular flow, and associated methods. United States Patent Application Publication, US 2009/0218098 A1, 3 Sep 2009

  • Timoshenko S, Goodier JN (1970) Theory of Elasticity. McGraw-Hill, New York

    Google Scholar 

  • Verhoef PN (1987) Sandblast testing of rock. Int J Rock Mech Min Sci 24:185–192

    Article  Google Scholar 

  • Verhoef PN, Kuipers TJ, Verwaal W (1984) The use of the sand-blast test to determine rock durability. Bull Int Assoc Engng Geol 29:457–461

    Article  Google Scholar 

  • Wallin K (2013) A simple fracture mechanical interpretation of size effects in concrete fracture toughness tests. Eng Fract Mech 99:18–29

    Article  Google Scholar 

  • Wang QZ, Yang JR, Zhang CG, Zhou Y (2014) Rock dynamic fracture toughness measured by using crack propagation gauge and universal function. In: 16th International Conference on Experimental Mechanics, Cambridge, UK; European Society Experimental Mechanics: 7–8 July 2014

  • Wiederhorn SM, Hockey BJ (1983) Effect of material parameters on the erosion resistance of brittle materials. J Mater Sci 18:766–780

    Article  Google Scholar 

  • Winslow DN (1984) A Rockwell hardness test for concrete. Cement Concr Aggreg 6:137–141

    Article  Google Scholar 

  • Zhang ZX, Kou SQ, Yu J, Yu Y, Jiang LG, Lindqvist PA (1999) Effects of loading rate on rock fracture. Int J Rock Mech Min Sci 36:597–611

    Article  Google Scholar 

  • Zhang ZX, Kou SQ, Jiang LG, Lindqvist PA (2000) Effects of loading rate on rock fracture: fracture characteristics and energy partitioning. Int J Rock Mech Min Sci 37:745–762

    Article  Google Scholar 

  • Zhang H, Song H, Kang Y, Huabng G, Qu C (2013) Experimental analysis on deformation evolution and crack propagation of rock under cyclic indentation. Rock Mech Rock Eng 46:1053–1059

    Article  Google Scholar 

Download references

Acknowledgments

The author is thankful to the German Academic Exchange Service (DAAD), Bonn, Germany, for providing an Exchange Lecturer Fellowship for a stay at the University of Cambridge, UK. Special thanks is addressed to the Fracture Group, Physics and Chemistry of Solids, Cavendish Laboratory, for its kind hospitality and the permission to use experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. W. Momber.

Appendices

Appendix A: Calculation of Eroded Volume According to the Model of Chen et al. (2005)

The volume eroded by an impinging solid particle is estimated as follows (Chen et al. 2005):

$$V_{\text{E}} \approx 0.41 \cdot \left[ {\frac{1}{{\pi^{2} \cdot c_{\text{I}}^{ 2} \cdot \tan^{2} \beta }} \cdot \left( {\frac{{(M_{\text{P}} \cdot v_{\text{P}}^{ 2} )^{14} }}{{E_{\text{M}}^{ 6} \cdot \varGamma_{\text{Ic}}^{6} \cdot \sigma_{\text{Y}}^{2} }}} \right)} \right]^{1/12}$$
(14)

Yield strength σ Y can be related to material hardness as follows (Tabor 1951):

$$\sigma_{\text{Y}} = \frac{{H_{\text{M}} }}{{c_{\text{I}} }}$$
(15)

The parameter c I is a material-dependent parameter; it can be estimated from a function f(E M/H M) provided by Bushby and Swain (1995). Hardness is linearly related to the compressive strength for many rocks and cement-based materials (Szwedzicki 1998; Winslow 1984; Igrashi et al. 1996). For the relationship between indentation hardness and uniaxial compressive strength of rock materials, the following correlation (R 2 = 0.974) can be applied (Jung et al. 1994):

$$H_{\text{M}} = 20.2 \cdot \sigma_{\text{C}} + 277$$
(16)

The indenter angle β can be related to the ratio r B/r P for spherical indenters (Chen et al. 2005). The graph in Chen et al. (2005; Fig. 5, p. 1236), can be approximated with a second-power regression (R 2 = 0.991):

$$\beta = 2 8. 3 2\cdot (r_{\text{B}} /r_{\text{P}} )^{ 2} + 2 6. 4 1\cdot (r_{\text{B}} /r_{\text{P}} )+ 1. 6 1$$
(17)

The contact radius can be calculated as follows (Fischer-Cipps 2007):

$$r_{\text{B}} = \left( {\frac{{3 \cdot P_{\text{C}} \cdot d_{\text{P}} \cdot k}}{8}} \right)^{1/3}$$
(18)

The ratio r B/r P can be expressed as follows:

$$\frac{{r_{\text{B}} }}{{r_{\text{P}} }} = \left( {\frac{{5 \cdot P_{\text{C}} \cdot k}}{8}} \right)^{1/3} \cdot r_{\text{P}}^{ - 2/3}$$
(19)

The contact force generated by an impacting spherical solid particle can be calculated as follows (Knight et al. 1977):

$${P_{\text{C}} = \left( {\frac{5}{3} \cdot \pi \cdot \rho_{\text{P}} } \right)^{3/5} \cdot \left( {\frac{3}{4} \cdot k} \right)^{ - 2/5} \cdot v_{\text{P}}^{6/5} \cdot \left( {\frac{{d_{\text{P}} }}{2}} \right)^{2} }$$
(20)

The parameter k balances the elastic properties of erodent and target material as follows (Fischer-Cipps 2007):

$${k = \frac{{1 - \nu_{\text{P}}^{2} }}{{E_{\text{P}} }} + \frac{{1 - \nu_{\text{M}}^{2} }}{{E_{\text{M}} }}} .$$
(21)

From linear-elastic fracture mechanics, E MΓ Ic can be expressed as follows:

$$K_{\text{Ic}}^{2} = E_{\text{M}} \cdot \varGamma_{\text{Ic}}$$
(22)

Appendix B: Calculation of Stress Rates

Loading rate in terms of stress rate can be expressed as follows:

$$\dot{\sigma } = \frac{{\sigma_{\text{P}} }}{{t_{\text{P}} }}$$
(23)

Here, σ P is the contact tensile stress, and t P is the period of contact. The tensile stress generated by an impinging spherical particle can be calculated as follows (Fischer-Cipps 2007):

$$\sigma_{\text{P}} = \frac{{(1 - 2 \cdot \nu_{\text{M}} ) \cdot P_{\text{C}} }}{{2 \cdot \pi \cdot r_{\text{B}}^{2} }}$$
(24)

Here, r B is the contact radius, and P C is the contact force. They are given in Appendix A. A solution for the contact time for elastic contact is provided by Timoshenko und Goodier (1970); it can be expressed as follows:

$$t_{\text{P}}^{\text{E}} = 2.94 \cdot \left[ {\frac{{5 \cdot \pi \cdot \rho_{\text{P}} \cdot k}}{4}} \right]^{2/5} \cdot \frac{{d_{\text{P}} }}{2} \cdot v_{\text{P}}^{ - 1/5}$$
(25)

The parameter k is given in Appendix A. This period can increase notably, if plastic deformation, toughening or erodent fragmentation occurs. Thus, a plastic contact time shall be added. A solution for the contact time for plastic contact is provided by Chaudri und Walley (1978); it reads as follows:

$$t_{\text{P}}^{\text{PL}} = \frac{\pi }{2} \cdot \left( {\frac{{M_{\text{P}} }}{{\pi \cdot d_{\text{P}} \cdot H_{\text{M}} }}} \right)^{1/2}$$
(26)

It can be seen that this time period does not depend on impingement velocity. The equations deliver the following relationship:

$$\dot{\sigma } \propto v_{\text{P}}^{3/5}$$
(27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momber, A.W. Fracture Toughness Effects in Geomaterial Solid Particle Erosion. Rock Mech Rock Eng 48, 1573–1588 (2015). https://doi.org/10.1007/s00603-014-0658-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-014-0658-x

Keywords

Navigation