## Abstract

Recently we formulated covariant equations describing the tetraquark in terms of an admixture of two-body states \(D{\bar{D}}\) (diquark-antidiquark), *MM* (meson-meson), and three-body-like states where two of the quarks are spectators while the other two are interacting (Phys Rev D 107:094014, 2023). A feature of these equations is that they unify descriptions of seemingly unrelated models of the tetraquark, like, for example, the \(D{\bar{D}}\) model of the Moscow group (Faustov et al. in Universe 7:94, 2021) and the coupled channel \(D {\bar{D}}-MM\) model of the Giessen group (Heupel et al. in Phys Lett B718:545, 2012). Here we extend these equations to the exact case where \(q\bar{q}\) annihilation is incorporated explicitly, and all previously neglected terms (three-body forces, non-pole contributions to two-quark t matrices, etc.) are taken into account through the inclusion of a single \(q\bar{q}\) potential \(\Delta \).

### Similar content being viewed by others

Avoid common mistakes on your manuscript.

## 1 Introduction

In 1992, Khvedelidze and Kvinikhidze (KK) formulated exact covariant equations for four particles interacting via pairwise interactions [1]. A feature of these equations is that pairwise interactions enter the theory not only via single two-body kernels \(K_a\) describing the scattering of a particle pair *a* while particle pair \(a'\) is spectating, but also via subtractions of products of kernels \(K_a K_{a'}\), which are needed to avoid overcounting, see Eq. (32) below. However, the equations are rearranged in such a way that all two-body kernels, including these subtraction terms, disappear, with two-body interactions entering the full theory as a *sum* of single two-body t matrices \(T_a\) and products of t matrices \(T_aT_{a'}\). In particular, the final equations use as input the amplitudes \(T_{aa'}\), defined as the full 4-body t matrix where all interactions are switched off except those within the pairs labelled by *a* and \(a'\), and which themselves are given in terms of \(T_a\) and \(T_{a'}\) as

where \(G_{a}^0\) and \(G_{a'}^0\) are the Green functions describing the free propagation of particle-pairs *a* and \(a'\), respectively [1, 2].

In 2012, members of the Giessen group, Heupel et al. [2], applied KK’s formulation to the case of two quarks (2*q*) and two antiquarks (\(2\bar{q}\)), introducing the further simplifications where the first two terms on the right hand side (rhs) of Eq. (1) are neglected, while the two-body t matrices in the last term \(T_a T_{a'}\) are approximated by their meson (*M*), diquark (*D*), and antidiquark (\(\bar{D}\)) pole contributions. The resulting equations were then reduced to a set of coupled two-body equations for the *MM*-tetraquark and \(D{\bar{D}}\)-tetraquark amplitudes \(\phi _M\) and \(\phi _D\), respectively, as illustrated in Fig. 1. A feature of the Giessen group’s approach is that it is based on a rigorous field-theoretic derivation for the \(2q2{\bar{q}}\) system where all approximations are clearly specified. Numerical solutions of these equations have been pursued by this group in a series of recent publications [2,3,4,5].

A separate approach has been followed for many years by the Moscow group, Faustov et al. [6,7,8,9], who model tetraquarks as a diquark-antidiquark system. The Moscow group’s model can be viewed as being based on the solutions of the bound-state equation for the \(D{\bar{D}}\)-tetraquark amplitude \(\phi _D\), as illustrated in Fig. 2. As seen from this figure, the kernel of the equation consists of a single term where a \(q\bar{q}\) pair scatters elastically in the presence of spectating *q* and \(\bar{q}\) quarks. More specifically, the Moscow model corresponds to the case where \(T_{q\bar{q}}\), the t matrix describing the mentioned \(q\bar{q}\) scattering, is expressed as a sum of two potentials

where \(V_{\text{ gluon }} \) is the \(q\bar{q}\) one-gluon-exchange potential and \(V_{\text{ conf }}\) is a local confining potential.^{Footnote 1}

Recently we have shown how these two seemingly unrelated approaches to the tetraquark can be unified by providing a common theoretical basis for the two separate models [10]. The key idea is based on the observation that the first two terms of Eq. (1), if retained in the application of KK’s formalism to the \(2q2\bar{q}\) system, would generate three-body-like intermediate states of the form \(q q (T_{\bar{q}\bar{q}})\), \(\bar{q}\bar{q}(T_{qq})\), and \(q{\bar{q}} (T_{q\bar{q}})\), where two of the quarks are spectators while the other two are interacting, the last of which, namely \(q\bar{q}(T_{q\bar{q}})\), would account for the kernel of the Moscow group’s bound state equation. Thus, in Ref. [10], we applied KK’s equations to the \(2q2\bar{q}\) system, similarly to Heupel et al. [2], but we retained the first two terms on the rhs of Eq. (1). In this way we obtained equations for the tetraqaurk which can be expressed in matrix form as

where \(\phi \) is a column of the tetraquark form factors, *D* is a diagonal matrix consisting of the two-meson propagator *MM* and the diquark-antidiquark propagator \(D\bar{D}\), namely,

where we have used the same graphical representation of the tetraquark form factors as in Figs. 1 and 2, and where the kernel of the equation (term in square brackets) consists of an infinite series, the first two terms of which, \(V^{(0)}\) and \(V^{(1)}\), are defined in terms of Feynman graphs as shown in Fig. 3 and Fig. 4, respectively. The ellipsis in Eq. (3) represents terms consisting of Feynman diagrams, similar to those of \(V^{(1)}\), but describing the full multiple scattering of quarks in intermediate state. We refer to Eq. (3) as the “unified tetraquark equations" [10].

That these equations unify the works of the Giessen and Moscow groups can be seen from the fact that the equations of Heupel et al. correspond to keeping just the term \(V^{(0)}\) term in the kernel of Eq. (3):

while the Moscow group model follows by keeping just the term \(V^{(1)}\) term in the kernel of Eq. (3):

but with all but the \(D\bar{D}\rightarrow D\bar{D}\) elements of \(V^{(1)}\) set to zero. Our formulation suggests that the Giessen and Moscow groups have been investigating two non-overalpping aspects of the same model of the tetraquark.

In the present work, we extend the unified tetraquark equations of Ref. [10], namely Eq. (3), to include all contributions that have been neglected in the derivation of these equations. In particular, we explicitly include \(q\bar{q}\) annihilation within the same formalism as used in Eq. (3), and at the same time, take into account all possible other contributions (e.g. three-body forces, non-pole contributions to the t matrices within the products \(T_a T_{a'}\), correction terms to overcounted or undercounted contributions, etc.) through the introduction of a \(q\bar{q}\) amplitude \(\Delta \) that is defined to consist of all corrections needed to restore the exactness of the model. That this is possible has been demonstrated by us in Ref. [11] on the example where the first two terms of Eq. (1) have been neglected. By following the same approach as [11], but retaining the first two terms of Eq. (1), we obtain equations of the same form as the unified tetraquark equations of Eq. (3), but that include \(q\bar{q}\) annihilation in the way prescribed by quantum field theory, and that are otherwise exact due to the inclusion of the \(\Delta \) amplitude. Similarly to Eq. (3), these equation can be expressed in matrix form as

where \(\varphi \) is a rank-3 column of tetraquark form factors, \({{\mathcal {D}}}\) is a diagonal matrix consisting of the two-meson propagator *MM*, the diquark-antidiquark propagator \(D\bar{D}\), and the \(q\bar{q}\) propagator \(Q{\bar{Q}}\), namely,

where \(\Phi _M\), \(\Phi _D\), and \(\Gamma ^*\) are form factors (together with their graphical representations) that couple the tetraquark to *MM*, \(D\bar{D}\) and \(q\bar{q}\) states, respectively. The kernel of Eq. (7) (term in square brackets) consists of two parts: (i) the kernel \({{\mathcal {V}}}\), defined formally as the sum of the infinite series

which is the kernel of the corresponding equation without \(q\bar{q}\) annihilation, i.e. Eq. (3), but expressed in rank-3 form as illustrated for the first two terms \({{\mathcal {V}}}^{(0)}\) and \({{\mathcal {V}}}^{(1)}\) in Figs. 5 and 6, respectively, and (ii) the kernel \({{\mathcal {W}}}\), illustrated in Fig. 7, which consists of \(q\bar{q}\)-irreducible amplitudes \({\bar{N}}_M\), \({\bar{N}}_D\), \(N_M\), and \(N_D\) connecting *MM* and \(D\bar{D}\) states to \(q\bar{q}\) states (as described in the figure caption of Fig. 7), and the aforementioned \(q\bar{q}\) elastic scattering amplitude \(\Delta \).

A feature of the tetraquark description as modelled by Eq. (7), is that it is formally exact no matter what model or approximations are used in calculating the kernel \({{\mathcal {V}}}\), or what model is used for the “*N* amplitudes" \({\bar{N}}_M\), \({\bar{N}}_D\), \(N_M\), and \(N_D\). This is due to the fact that the \(\Delta \) appearing in \({{\mathcal {W}}}\), by definition, consists of compensating terms that keep the tetraquark description exact. To illustrate this point, let us consider the model where \({{\mathcal {V}}} = {{\mathcal {V}}}^{(0)}\), corresponding to the Giessen model, but where \(q\bar{q}\) annihilation is taken into account through the inclusion of the kernel \({{\mathcal {W}}}\) where the *N* amplitudes are modelled as in Fig. 7. We can then formally adjust the \(\Delta \) amplitude to the amplitude \(\Delta _0\), with the resulting kernel \({{\mathcal {W}}}\) being denoted by \({{\mathcal {W}}}_0\), such that the tetraquark equation

is exact; that is, having the same solution \(\varphi \) as Eq. (7). That this is the case can be seen from the discussion in Sec. 2.1 below, where we show that the three equations represented by Eq. (7) are equivalent to the single equation for the \(\text {tetraquark}\rightarrow q\bar{q}\) form factor \(\Gamma ^*\), Eq. (23), whose \(q\bar{q}\) kernel \(K^{(2)}\), given by Eq. (22), can be made exact by adjusting \(\Delta \), no matter what model is chosen for the *N* amplitudes or potential *V*. This means that \(\Delta _0\) contains within it information about \({{\mathcal {V}}}^{(1)}\) and all the rest of the contributions not explicitly appearing in Eq. (10). Similarly, we can consider the model where \({{\mathcal {V}}} = {{\mathcal {V}}}^{(0)} + {{\mathcal {V}}}^{(1)}\), and then adjust the \(\Delta \) amplitude to the amplitude \(\Delta _1\), with the resulting kernel \({{\mathcal {W}}}\) being denoted by \({{\mathcal {W}}}_1\), such that the tetraquark equation

is exact. The amplitude \(\Delta _1\) then contains within it information about \({{\mathcal {V}}}^{(2)}\) and all the rest of the contributions not explicitly appearing in Eq. (11). Equation (11) is then the exact tetraquark equation that includes \(q\bar{q}\) annihilation into the unified description of the Giessen and Moscow models of the tetraquark as described by Eq. (61) of [10]. It is clear from these examples that the tetraquark equations, Eq. (7), have the generality to unify a large variety of other possible tetraquark models. Moreover, the same equations can be applied generally to four-body systems that couple to 2-body channels, as for example the two-electron plus two-positron system, the two-nucleon plus two-antinucleon system, etc.

## 2 Derivation

The main results of this paper have been summarised above, and are embodied in the exact tetraquark equations of Eq. (7). In this section, we aim to provide as short a derivation of these equations as possible, but without sacrificing rigour or clarity. For this purpose we consider only the non-identical meson case, noting that the additional step of symmetrising *MM* states for the case of identical mesons, can be implemented simply by referring to Ref. [10] where this procedure is described.

To derive Eq. (7), we incorporate \(q\bar{q}\) absorption into the unified tetraquark equations of Ref. [10], by exploiting the same procedure as we previously used in Ref. [11] to incorporate \(q\bar{q}\) absorption into the tetraquark model of the Giessen group. This procedure is described in Sect. 2.1. In order to derive the precise mathematical expressions corresponding to the diagrams of Figs. 1, 2, 3, 4, 5, 6 and 7, it is also necessary to discuss the derivation of the unified tetraquark equations themselves, at least for the case of non-identical mesons. Although this derivation has been previously given in a part of Ref. [10], for completeness we reproduce this derivation in Sect. 2.2 below, although using a somewhat simpler notation.

### 2.1 Describing the Tetraquark in the Presence of \(q\bar{q}\) Annihilation

In the absence of \(q\bar{q}\) annihilation (either because annihilation is being neglected or because quantum numbers forbid it), the tetraquark can be simply defined as the four-body bound state of two quarks and two antiquarks as signalled by a pole in the full \(2q2\bar{q}\) Green function \(G^{(4)}\). However, in the presence of \(q\bar{q}\) annihilation (when annihilation is physically realisable and taken into account), a pole in \(G^{(4)}\) becomes an insufficient criterion for a tetraquark, as can be seen from the exact field-theoretic expression for \(G^{(4)}\):

where \(G_{ir}^{(4)}\) is the \(q\bar{q}\)-irreducible part of \(G^{(4)}\), \(G_0^{(2)}\) is the disconnected part of the two-body \(q{\bar{q}}\) Green function \(G^{(2)}\) (corresponding to the independent propagation of *q* and \(\bar{q}\) in the *s* channel), and \(G_{ir}^{(2-4)}\) (\(G_{ir}^{(4-2)}\)) is the sum of all \(q{\bar{q}}\)-irreducible diagrams corresponding to the transition \(q{\bar{q}}\leftarrow 2q2{\bar{q}}\) (\(2q2{\bar{q}}\leftarrow q{\bar{q}}\)). Equation (12) shows that \({ any}\) pole in the \(q\bar{q}\) Green function \(G^{(2)}\), even if not associated with a tetraquark, is automatically a pole in \(G^{(4)}\).

Here we consider the case of the tetraquark in the presence of annihilation, meaning that the transition Green functions \(G_{ir}^{(4-2)}\) and \(G_{ir}^{(2-4)}\) in Eq. (12) are not zero. For such a case, both \(G^{(4)}\) and \(G^{(2)}\) will display simultaneous poles corresponding to a tetraquark of mass *M*, so that as \(P^2\rightarrow M^2\) where *P* is the total four-momentum of each system,

In Eq. (13), \(\Psi \) is the tetraquark 4-body \((2q2\bar{q})\) bound state wave function, while \(\Gamma ^*\) is the form factor for the disintegration of a tetraquark into a \(q\bar{q}\) pair.

As previously introduced in Ref. [11], our key idea for describing a tetraquark in the presence on \(q\bar{q}\) annihilation, is to: (i) express \(G_{ir}^{(4)}\) in terms of some model for the \(2q2\bar{q}\) system in absence of \(q\bar{q}\) annihilation, and (ii) to then express the \(q\bar{q}\) kernel \(K^{(2)}\), defined through the Dyson equation

in terms of \(G_{ir}^{(4)}\) as

where operators \(A^{(4-2)}\) (\(A^{(2-4)}\)) are \(q\bar{q}\)-irreducibe amplitudes describing the transitions \(2q 2\bar{q}\leftarrow q\bar{q}\) (\( q\bar{q}\leftarrow 2q2\bar{q}\)) in the chosen model, and \(\Delta \) is defined as the \(q\bar{q}\)-irreducible \(q\bar{q}\) four-point function consisting of all contributions not accounted for by the last term of Eq. (15). A feature of this approach is that no matter what model is chosen for \(G_{ir}^{(4)}\) and \(A^{(4-2)}\) (\(A^{(2-4)}\)), Eq. (15) is exact in view of the definition of \(\Delta \). Moreover, all terms contained in \(\Delta \) are known thanks to its clear definition; for example, it contains sums of multiple-gluon exchanges. This fact enables one to systematically improve the approximations used in modelling the tetraquark, as for example, to take into account one-gluon exchange explicitly.

Furthermore, as the purpose of this work is to extend the unified tetraquark equations to include \(q\bar{q}\) annihilation and other corrections, we assume that \(G_{ir}^{(4)}\) (which is the Green function determining the unified tetraquark equations) has a pole at \(P^2=M_0^2\), where \(M_0\) is the tetraquark mass described by these equations; thus

where \(\Psi _0\) is the corresponding tetraquark wave function, and *R* is a background term. It is then straightforward to prove^{Footnote 2}

which shows that in the absence of annihilation and other corrections (described by \(\Delta \)), the tetraquark’s mass \(M_0\) plays the role of a “bare" mass, and that the inclusion of annihilation and other corrections, then shifts the bare mass to the physical tetraquark mass *M*.

Here we apply this approach to the case where \(A^{(2-4)}G_{ir}^{(4)} A^{(4-2)}\) is expressed in terms of the tetraquark model as described by the unified tetraquark equations, Eq. (3), and as derived specifically in Sect. 2.2 below. In particular, we write this term as

where *G* is the Green function in \(MM-D\bar{D}\) space generated by the kernel of Eq. (3), thus

and \({\bar{N}}\) (simlarly *N*) is a matrix of transition amplitudes \({\bar{N}}_M\) (for \(q\bar{q}\leftarrow MM\)) and \({\bar{N}}_D\) (for \(q\bar{q}\leftarrow D\bar{D}\)). We follow Ref. [12] where the simplest model for such amplitudes was realised, namely those described graphically as

and given analytically in the notation of Sect. 2.2.3 below, as

where \(S_{23}\) is the quark propagator connecting quark lines 2 and 3. Expressions for the kernels making up *V* are also derived in Sect. 2.2.3, with \(V^{(0)}\) being given by Eq. (79), and \(V^{(1)}\) by Eq. (81). Thus

It is also evident from Eq. (14) and the second of the relations in Eq. (13), that the tetraquark state will also satisfy the two-body equation

Using Eq. (22) in Eq. (23), one obtains

where

with \(\phi \) being the column of tetraquark form factors \(\phi _M\) and \(\phi _D\) as in Eq. (4). By introducing a column of tetraquark form factors that also includes the form factor \(\Gamma ^*\),

and defining \(G_0^{(2)} \equiv Q{\bar{Q}}\), Eq. (24) and Eq. (25) can be expressed succinctly as the rank-3 matrix equation Eq. (7).

### 2.2 Unified Tetraquark Equations

The exact unified tratraquark equations, Eq. (7), take as an input the kernel of the unified tetraquark equations of Ref. [10], including the separate form factors for the \(M \leftrightarrow q\bar{q}\), \(D \leftrightarrow q q\), and \(\bar{D}\leftrightarrow \bar{q}\bar{q}\) processes that may be used to model the input \(MM \leftrightarrow q\bar{q}\) and \(D\bar{D}\leftrightarrow q\bar{q}\) transition amplitudes, as for example in Eqs. (21). For this reason, it is essential to refer to the derivation of the unified tetraquark equations where all the expressions used in the current work as input, are developed. Although this derivation can be found in full in Ref. [10], for the purposes of the current work, it is sufficient to consider this deriviation just for the case of non-identical mesons. For completeness, we present this derivation here, following closely the presentation of Ref. [10], but using a somewhat simpler notation.

#### 2.2.1 Four-Body Equations for Distinguishable Quarks

We consider the 4-body system consisting of 2*q* and \(2\bar{q}\) treated as distinguishable particles where \(q\bar{q}\) annihilation (or creation) is not allowed. The 4-body Green function describing this system is then \(G^{(4)}_{ir}\), the \(q\bar{q}\)-irreducible part of the full Green function \(G^{(4)}\), as in Eq. (12). One can then introduce the 4-body kernel *K* and corresponding t matrix *T* (both \(q\bar{q}\)-irreducible) through the equations

where \(G_0\) describes the free propagation of all four particles. We assign labels 1,2 to the quarks and 3,4 to the antiquarks and following Ref. [1], introduce an index \(a \in \left\{ 12,13,14,23,24,34\right\} \) which enumerates the six possible pairs of particles. Similarly, we introduce the double index \(aa' \in \left\{ (13,24), (14,23),(12,34)\right\} \) which enumerates the three possible two-pairs of particles, and use the Greek index \(\alpha \) as an abbreviation for \(aa'\) such that \(\alpha =1\) denotes \(aa'=(13,24)\), \(\alpha =2\) denotes \(aa'=(14,23)\), and \(\alpha =3\) denotes \(aa'=(12,34)\).

Using this labelling scheme, it is useful to consider the Green function \(G_{aa'}\) defined as the part of \(G^{(4)}_{ir}\) where all interactions are switched off except those within the pairs *a* and \(a'\). One can then introduce the corresponding kernel \(K_{aa'}\) and t matrix \(T_{aa'}\) through the equations

Note that we drop the superscript indicating the number of particles described, when this is otherwise implied by the meaning of the subscripts. It is evident that in the theory where only pairwise interactions are allowed, one has that

This is a key expression for *K* as it is of similar form to that describing the kernel of a 3-body system interacting via pairwise interactions, thereby leading to the formulation of 4-body equations by analogy to those of 3-body equations [1]. It is also clear that

where \(G_a\) (similarly \(G_{a'}\)) is the full 2-body Green function for the scattering of particles of pair *a*, with corresponding 2-body kernel \(K_{a}\) and t matrix \(T_a\) defined through

where \(G_a^0\) describes the free propagation of the particles in pair *a*. Using the above equations it is then easy to show Eq. (1) and similarly that

where the presence of a minus sign in the last term of Eq. (32) is necessary to avoid overcounting.

The \(2q2\bar{q}\) bound state form factor for distinguishable quarks is then

The four-body kernels \(K_\alpha \) can be used to define the Faddeev components of \(\Phi \) as

so that

From Eq. (33) follow Faddeev-like equations for the components,

where \(\bar{\delta }_{\alpha \beta }=1-\delta _{\alpha \beta }\).

#### 2.2.2 Four-Body Equations for Indistinguishable Quarks

The bound state equation for two identical quarks 1, 2 and two identical antiquarks 3, 4, is modified from Eq. (33) to

where now the kernel *K* is antisymmetric with respect to swapping quark or antiquark quantum numbers either in the initial or in the final state; that is,

where the exchange operator \({{\mathcal {P}}}_{ij}\) swaps the quantum numbers associated with particles *i* and *j* in the quantity on which it is operating. The factor \( \frac{1}{4}\) in Eq. (37) is a product of the combinatorial factors \(\frac{1}{2}\), one for identical quarks and another for identical antiquarks.

In order to distinguish the quantities \(\Phi \), *K*, and *T* in the present case of indistinguishable quarks, from their distinguishable-quark counterparts discussed in the previous section, we shall simply use a superscript *d* to denote the quantities that apply to the case of distinguishable quarks. Thus Eq. (33) for distinguishable quarks shall now be written as

Eq. (36) as

and Eq. (1) as

The kernel *K* that is antisymmetric in the way specified by Eq. (38), can be represented as

where \(K^d\) is symmetric with respect to swapping either quark or antiquark quantum numbers in the initial and final states simultaneously, \({{\mathcal {P}}}_{12}K^d{{\mathcal {P}}}_{12}={{\mathcal {P}}}_{34}K^d{{\mathcal {P}}}_{34}=K^d\). This symmetry property of \(K^d\) can be written in the form of commutation relations

and follows directly from the following relations implied by Eqs. (32):

Due to the antisymmetry properties of *K* as specified in Eq. (38), the solution of the identical particle bound state equation, Eq. (37), is correspondingly antisymmetric; namely, \({{\mathcal {P}}}_{34}\Phi ={{\mathcal {P}}}_{12}\Phi =-\Phi \). However, because \(K^d\) usually corresponds to a fewer number of diagrams than *K*, rather than solving Eq. (37), it may be more convenient to determine \(\Phi \) by antisymmetrising the solution \(\Phi ^d\) of the bound state equation for distinguishable quarks, as

Then, in view of the commutation relations of Eq. (43), if the solution \(\Phi ^d\) exists, its antisymmetrized version as given by Eq. (45), also satisfies the bound state equation for distinguishable quarks, Eq. (39), as well as the one for indistinguishable ones, Eq. (37):

As \(\Phi \) satisfies the same bound state equation as \(\Phi ^d\),

the kernels \(K^{d}_\alpha \) can again be used to define Faddeev components, but this time for \(\Phi \):

where

In view of Eqs. (44), the Faddeev components \(\Phi _\alpha \) have the following properties:

Since \(\Phi \) satisfies the same bound state equation as \(\Phi ^d\), the components \(\Phi _\alpha \) satisfy the same Faddeev-like equations as for distinguishable quarks, Eq. (40),

Without loss of generality, we can assume that the solution of Eq. (51) has the symmetry properties of Eq. (50) [10]. We also note that the input 2-body t matrices \(T^{d}_{12}\) and \(T^{d}_{34}\) can be antisymmetrized by defining

so that

By defining further that

we have made Eq. (1) apply, with unchanged notation, also for the case of indistinguishable quarks. Moreover, one can now write Eq. (51) simply as

where dropping the superscript *d* from \(T_\alpha ^d\) for the case \(\alpha =3\) can be justified by multiplying Eq. (51) for this case by \((1-{{\mathcal {P}}}_{12})\) and using the symmetry properties of Eq. (50):

The advantage of using \(T_3\) rather than \(T^d_3\) in this equation stems from the fact that the physical (antisymmetric) t matrices for *qq* and \(\bar{q}\bar{q}\) scattering are \(T_{qq} = (1-{{\mathcal {P}}}_{12})T^d_{12} =2T_{12}\) and \(T_{\bar{q}\bar{q}} = (1-{{\mathcal {P}}}_{34})T^d_{34} =2T_{34}\), respectively, therefore it is convenient to use the antisymmetric \(T_{12}\) and \(T_{34}\) as the input *qq* and \(\bar{q}\bar{q}\) t matrices.

Writing out Eqs. (55) in full, but to save notation without explicitly showing \(G_0\)’s, one has

For physical (antisymmetric) solutions of Eqs. (57), only two of these three equations are independent. For example, Eq. (57b) can be written as

where Eq. (50) and \(T_2={{\mathcal {P}}}_{12}T_1{{\mathcal {P}}}_{12}\) have been used; then, after a further application of \({{\mathcal {P}}}_{12}\), one obtains Eq. (57a). Choosing Eq. (57a) and Eq. (57c) as the two independent equations, we can use \( \Phi _2 = -{{\mathcal {P}}}_{12}\Phi _1\) to obtain closed equations

where, necessarily, \({{\mathcal {P}}}_{12}\Phi _3 = -\Phi _3\). Again, without loss of generality, we can assume that the solutions of Eq. (59) have the symmetry properties of Eq. (50) [10]. Equation (59b) can be further simplified using \({{\mathcal {P}}}_{12}\Phi _1={{\mathcal {P}}}_{34}\Phi _1\) and the assumption that \(T_{12}\) and \(T_{34}\) are antisymmetric in their labels, so that

In this way Eqs. (59) take the form

Again, without loss of generality, we choose a solution of Eqs. (61) which has all the symmetry properties of Eq. (50).

#### 2.2.3 Tetraquark Equations with Exposed \({q{\bar{q}} (T_{q\bar{q}})}\), \({q q (T_{\bar{q}\bar{q}})}\), and \({\bar{q}\bar{q}(T_{qq})}\) Channels

Choosing Eqs. (61) as the four-body equations describing a tetraquark, they may be expressed in matrix form as

where

Writing

where

we have that

where

Thus

and consequently

To be close to previous publications we choose a separable approximation for the two-body t matrices in \(T^\times _1\) and \(T^\times _3\) (but not necessarily in \(T^+_1\) and \(T^+_3\)); namely, for \(a \in \left\{ 13, 24,12, 34\right\} \) we take

where \(D_{a}=D_{a}(P_{a})\) is a propagator whose structure can be chosen to best describe the two-body t matrix \(T_{a}\), and \(\Gamma _{a}\) is a corresponding vertex function. In the simplest case, one can follow previous publications and choose the pole approximation where \(D_{a}(P_{a})=1/(P_{a}^2-m_{a}^2)\) is the propagator for the bound particle (diquark, antidiquark, or meson) of mass \(m_a\). In view of Eq. (53), note that

We can thus write

where

In this way \({{\mathcal {T}}}^\times \) exposes intermediate state meson-meson \((D_{13}D_{24})\) and diquark-antidiquark \((D_{12}D_{34})\) channels. Using Eq. (72) in Eq. (69),

where

In this way we obtain the bound state equation for \(\phi \) in meson-meson (*MM*) and diquark-antidiquark \((D{\bar{D}})\) space,

where the \(2\times 2\) matrix potential (with reinserted \(G_0 \)) is

Expanding the term in square brackets in powers of \({{\mathcal {T}}}^+\) (i.e., with respect to the contribution of intermediate states \(q{\bar{q}} (T_{q\bar{q}})\), \(q q (T_{\bar{q}\bar{q}})\), and \(\bar{q}\bar{q}(T_{qq})\)),

it turns out that each of the first two terms of this expansion corresponds to different existing approaches to modelling tetraquarks in terms of \(MM-D{\bar{D}}\) coupled channels. In particular, the lowest order term

where

consists of Feynman diagrams illustrated in Fig. 3, and corresponds to the Giessen group (GG) model of Heupel et al. [2] where tetraquarks are modelled by solving Eq. (5).

Similarly, the first order correction (without the lowest order term included) is

which consists of Feynman diagrams illustrated in Fig. 4, and corresponds to the Moscow group (MG) model of Faustov et al. [7] where they modelled tetraquarks by solving Eq. (6) albeit, with only diquark-antidiquark channels retained. It is an essential feature of this formulation, that it is the sum of the potentials \(V^{(0)}\) and \(V^{(1)}\), each associated with the separate approaches of the Giessen and Moscow groups, with tetraquarks modelled by the bound state equation

that results in a complete \(MM-D{\bar{D}}\) coupled channel description up to first order in \({{\mathcal {T}}}^+\) [i.e., up to first order in intermediate states where one 2*q* pair (*qq*, \(q\bar{q}\), or \(\bar{q}\bar{q}\)) is mutually interacting while the other 2*q* pair is spectating].

Finally we need to point out that for the case of identical mesons, the *MM* states in the above \(MM-D{\bar{D}}\) coupled channel description need to be symmetrised. This does not change the structure of any of the above equations, or the essential results. The details of this symmetrisation are given in Ref. [10].

## Data availability

No datasets were generated or analysed during the current study.

## Notes

To be precise, the Moscow group uses quasipotential bound state form factors instead of the \(D\rightarrow qq\) form factor \(\Gamma _{12}(p,P)\) and the \({\bar{D}} \rightarrow \bar{q}\bar{q}\) form factor \(\Gamma _{34}(p,P)\), appearing as small blue circles in Fig. 2. Formally, this is equivalent to assuming that \(\Gamma _{12}(p,P)\) and \(\Gamma _{34}(p,P)\) do not depend on the longitudinal projection of the relative 4-momentum

*p*with respect to the total momentum*P*of the two quarks or two antiquarks.It follows from the second of Eqs. (13), Eq. (14) and Eq. (15) that

$$\begin{aligned} \Gamma ^* = K^{(2)} G_0^{(2)}\Gamma ^* = \left[ \Delta + A^{(2-4)}G_{ir}^{(4)} A^{(4-2)}\right] G_0^{(2)}\Gamma ^*. \end{aligned}$$Using Eq. (16) with \(P^2=M^2\) in the above expression, and defining \(X= \bar{\Psi }_0 A^{(4-2)} G_0^{(2)}\Gamma ^*\), one obtains

$$\begin{aligned} X = \bar{\Psi }_0 A^{(4-2)} \left[ G_0^{(2)}{}^{-1}-\Delta - A^{(2-4)} R A^{(4-2)} \right] ^{-1} A^{(2-4)} \Psi _0 \frac{i}{M^2-M_0^2} X \end{aligned}$$which then implies Eq. (17).

## References

A.M. Khvedelidze, A.N. Kvinikhidze, Pair interaction approximation in the equations of quantum field theory for a four-body system. Theor. Math. Phys.

**90**, 62–74 (1992)W. Heupel, G. Eichmann, C.S. Fischer, Tetraquark bound states in a Bethe-Salpeter approach. Phys. Lett. B

**718**, 545–549 (2012). https://doi.org/10.1016/j.physletb.2012.11.009. arXiv:1206.5129 [hep-ph]G. Eichmann, C.S. Fischer, W. Heupel, The light scalar mesons as tetraquarks. Phys. Lett. B

**753**, 282–287 (2016). https://doi.org/10.1016/j.physletb.2015.12.036. arXiv:1508.07178 [hep-ph]G. Eichmann, C.S. Fischer, W. Heupel, N. Santowsky, P.C. Wallbott, Four-quark states from functional methods. Few Body Syst.

**61**(4), 38 (2020). https://doi.org/10.1007/s00601-020-01571-3. arXiv:2008.10240 [hep-ph]N. Santowsky, C.S. Fischer, Four-quark states with charm quarks in a two-body Bethe–Salpeter approach. Eur. Phys. J. C

**82**(4), 313 (2022). https://doi.org/10.1140/epjc/s10052-022-10272-6. arXiv:2111.15310 [hep-ph]D. Ebert, R.N. Faustov, V.O. Galkin, Masses of heavy tetraquarks in the relativistic quark model. Phys. Lett. B

**634**, 214–219 (2006). https://doi.org/10.1016/j.physletb.2006.01.026. arXiv:hep-ph/0512230R.N. Faustov, V.O. Galkin, E.M. Savchenko, Masses of the \(QQ{\bar{Q}}{\bar{Q}}\) tetraquarks in the relativistic diquark-antidiquark picture. Phys. Rev. D

**102**(11), 114030 (2020). https://doi.org/10.1103/PhysRevD.102.114030. arXiv:2009.13237 [hep-ph]R.N. Faustov, V.O. Galkin, E.M. Savchenko, Heavy tetraquarks in the relativistic quark model. Universe

**7**(4), 94 (2021). https://doi.org/10.3390/universe7040094. arXiv:2103.01763 [hep-ph]R.N. Faustov, V.O. Galkin, E.M. Savchenko, Fully heavy tetraquark spectroscopy in the relativistic quark model. Symmetry

**14**(12), 2504 (2022). https://doi.org/10.3390/sym14122504. arXiv:2210.16015 [hep-ph]A.N. Kvinikhidze, B. Blankleider, Unified tetraquark equations. Phys. Rev. D

**107**(9), 094014 (2023). https://doi.org/10.1103/PhysRevD.107.094014. arXiv:2302.11542 [hep-ph]A.N. Kvinikhidze, B. Blankleider, Covariant tetraquark equations in quantum field theory. Phys. Rev. D

**106**(5), 054024 (2022). https://doi.org/10.1103/PhysRevD.106.054024. arXiv:2102.09558 [hep-th]A.N. Kvinikhidze, B. Blankleider, Covariant equations for the tetraquark and more. Phys. Rev. D

**90**(4), 045042 (2014). https://doi.org/10.1103/PhysRevD.90.045042. arXiv:1406.5599 [hep-ph]

## Acknowledgements

A.N.K. was supported by the Shota Rustaveli National Science Foundation (Grant No. FR-23-856).

## Funding

Open Access funding enabled and organized by CAUL and its Member Institutions.

## Author information

### Authors and Affiliations

### Contributions

Authors contributed equally in all aspects of this work.

### Corresponding author

## Ethics declarations

### Conflict of interest

The authors declare that they have no conflict of interest.

## Additional information

### Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Rights and permissions

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

## About this article

### Cite this article

Blankleider, B., Kvinikhidze, A.N. Exact Unified Tetraquark Equations.
*Few-Body Syst* **65**, 59 (2024). https://doi.org/10.1007/s00601-024-01927-z

Received:

Accepted:

Published:

DOI: https://doi.org/10.1007/s00601-024-01927-z