Skip to main content
Log in

Isospin Correlations in Isotope Yields at Intermediate and High Energy Heavy-Ion Collisions

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Isotopic yields of fragments emitted from projectile sources in peripheral collisions at Fermi and relativistic energy regimes are studied in the framework of the statistical multifragmentation model for an ensemble of excited both projectile and midrapidity sources. The data of FAZIA and FRS experiments and results of their theoretical analyses are compared together with each other to investigate the differences and similarities in both energy regimes. The importance of possible applications of the present results for the production of new exotic nuclei including hypernuclei in relativistic peripheral collisions that may have a broad yield distributions extending beyond the proton and neutron driplines, is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. J.P. Bondorf, A.S. Botvina et al., Statistical multifragmentation of nuclei. Phys. Rep. 257, 133–221 (1995). https://doi.org/10.1016/0370-1573(94)00097-M

    Article  ADS  CAS  Google Scholar 

  2. N. Buyukcizmeci, A.S. Botvina et al., A comparative study of statistical models for nuclear equation of state of stellar matter. Nucl. Phys. A 907, 13–54 (2013). https://doi.org/10.1016/j.nuclphysa.2013.03.010

    Article  ADS  CAS  Google Scholar 

  3. H. Schatz, A.D.B. Reyes et al., Horizons: nuclear astrophysics in the 2020s and beyond. J. Phys. G: Nucl. Part. Phys. 49, 110502 (2022). https://doi.org/10.1088/1361-6471/ac8890

    Article  ADS  CAS  Google Scholar 

  4. A.S. Botvina, I.N. Mishustin et al., Multifragmentation of spectators in relativistic heavy-ion reactions. Nucl. Phys. A 584, 737 (1995). https://doi.org/10.1016/0375-9474(94)00621-S

    Article  ADS  Google Scholar 

  5. H. Xi, T. Odeh et al., Breakup temperature of target spectators in 197Au+97Au collisions at E/A=1000 MeV. Z. Phys. A 359, 397 (1997). https://doi.org/10.1007/s002180050420

    Article  ADS  CAS  Google Scholar 

  6. R. Ogul, A.S. Botvina et al., Isospin-dependent multifragmentation of relativistic projectiles. Phys. Rev. C 83, 024608 (2011). https://doi.org/10.1103/PhysRevC.83.024608

    Article  ADS  CAS  Google Scholar 

  7. R.P. Scharenberg, B.K. Srivastava et al., Comparison of 1A GeV 197Au+C data with thermodynamics. Phys. Rev. C 64, 054602 (2001). https://doi.org/10.1103/PhysRevC.64.054602

    Article  ADS  CAS  Google Scholar 

  8. V.E. Viola, T. Lefort et al., Signals for the transition from liquid to gas in hot nuclei. Nucl. Phys. A 681, 267c (2001). https://doi.org/10.1016/S0375-9474(00)00526-1

    Article  ADS  Google Scholar 

  9. L. Pienkowski, K. Kwiatkowski et al., Breakup time scale studied in the 8 GeV/c pi(-) + 197Au reaction. Phys. Rev. C 65, 064606 (2002). https://doi.org/10.1103/PhysRevC.65.064606

    Article  ADS  CAS  Google Scholar 

  10. V.A. Karnaukhov, H. Oeschler et al., Liquid-fog and liquid-gas phase transitions in hot nuclei. Phys. At. Nucl. 69, 1142 (2006). https://doi.org/10.1134/S1063778806070076

    Article  CAS  Google Scholar 

  11. V.A. Karnaukhov, S.P. Avdeyev et al., Nuclear multifragmentation and fission: similarity and differences. Nucl. Phys. A 780, 91 (2006). https://doi.org/10.1016/j.nuclphysa.2006.09.017

    Article  ADS  CAS  Google Scholar 

  12. M. D’Agostino, A.S. Botvina et al., Statistical multifragmentation in central Au+Au collisions at 35 MeV/u. Phys. Lett. B 371, 175 (1996). https://doi.org/10.1016/0370-2693(96)00008-1

    Article  ADS  Google Scholar 

  13. N. Bellaize, O. Lopez et al., Multifragmentation process for different mass asymmetry in the entrance channel around the Fermi energy. Nucl. Phys. A 709, 367 (2002). https://doi.org/10.1016/S0375-9474(02)00988-0

    Article  ADS  Google Scholar 

  14. J. Iglio, D.V. Shetty et al., Symmetry energy and the isoscaling properties of the fragments produced in 40Ar, 40Ca+58Fe, 58Ni reactions at 25, 33, 45, and 53 MeV/nucleon. Phys. Rev. C 74, 024605 (2006). https://doi.org/10.1103/PhysRevC.74.024605

    Article  ADS  CAS  Google Scholar 

  15. M. D’Agostino, A.S. Botvina et al., Thermodynamical features of multifragmentation in peripheral Au + Au Collisions at 35 A. MeV. Nucl. Phys. A650, 329 (1999). https://doi.org/10.1016/S0375-9474(99)00097-4

    Article  ADS  Google Scholar 

  16. A.S. Botvina, I.N. Mishustin, Statistical evolution of isotope composition of nuclear fragments. Phys. Rev. C 63, 061601(R) (2001). https://doi.org/10.1103/PhysRevC.63.061601

    Article  ADS  CAS  Google Scholar 

  17. A.S. Botvina, A.S. Iljinov et al., Statistical simulation of the break-up of highly excited nuclei. Nucl. Phys. A 475, 663–686 (1987). https://doi.org/10.1016/0375-9474(87)90232-6

    Article  ADS  Google Scholar 

  18. R. Ogul, A.S. Botvina, Critical temperature of nuclear matter and fragment distributions in multifragmentation of finite nuclei. Phys. Rev. C(R) 66, 051601 (2002). https://doi.org/10.1103/PhysRevC.66.051601

  19. V. Weisskopf, Statistics and nuclear reactions. Phys. Rev. 52, 295 (1937). https://doi.org/10.1103/PhysRev.52.295

    Article  ADS  CAS  Google Scholar 

  20. N. Buyukcizmeci, R. Ogul, A.S. Botvina, Isospin and symmetry energy effects on nuclear fragment production in liquid gas-type phase transition region. Eur. Phys. J. A 25(1), 57–64 (2005). https://doi.org/10.1140/epja/i2004-10281-7

    Article  ADS  CAS  Google Scholar 

  21. S. Piantelli, G. Casini et al., Isospin transport phenomena for the systems Kr-80+Ca-40, Ca-48 at 35 MeV/nucleon. Phys. Rev. C 103, 014603 (2021). https://doi.org/10.1103/PhysRevC.103.014603

    Article  ADS  CAS  Google Scholar 

  22. V. Föhr, A. Bacquias et al., Experimental study of fragmentation products in the reactions 112Sn + 112Sn and 124Sn + 124Sn at 1A GeV. Phys. Rev. C 84, 054605 (2011). https://doi.org/10.1103/PhysRevC.84.054605

    Article  ADS  CAS  Google Scholar 

  23. D. Henzlova, K.-H. Schmidt et al., Experimental investigation of the residues produced in the 136Xe+Pb and 124Xe+Pb fragmentation reactions at 1 A GeV. Phys. Rev. 78, 044616 (2008). https://doi.org/10.1103/PhysRevC.78.044616

    Article  CAS  Google Scholar 

  24. H. Imal, A. Ergun et al., Theoretical study of projectile fragmentation in the Sn-112+Sn-112 and Sn-124+Sn-124 reactions at 1 GeV/nucleon. Phys. Rev. C 91(3), 034605 (2015). https://doi.org/10.1103/PhysRevC.91.034605

    Article  ADS  CAS  Google Scholar 

  25. H. Imal, R. Ogul, Theoretical study of isotope production in the peripheral heavy-ion collision 136Xe + Pb at 1 GeV/nucleon. Nucl. Phys. A 1014, 122261 (2021). https://doi.org/10.1016/j.nuclphysa.2021.122261

    Article  CAS  Google Scholar 

  26. S. Barlini, S. Piantelli et al., Isospin transport in 84Kr + 112,124Sn collisions at Fermi energies. Phys. Rev. C 87, 054607 (2013). https://doi.org/10.1103/PhysRevC.87.054607

    Article  ADS  CAS  Google Scholar 

  27. R. Ogul, A.S. Botvina et al., Isospin compositions of correlated sources in the Fermi energy domain. Phys. Rev. C 107, 054606 (2023). https://doi.org/10.1103/PhysRevC.107.054606

    Article  ADS  CAS  Google Scholar 

  28. V. Baran, M. Colonna et al., Reaction dynamics with exotic nuclei. Phys. Rep. 410, 335 (2005). https://doi.org/10.1016/j.physrep.2004.12.004

    Article  ADS  CAS  Google Scholar 

  29. W. Trautmann, S. Bianchin et al., The symmetry energy in nuclear reactions. Int. J. Mod. Phys. E 19, 1653 (2010). https://doi.org/10.1142/S0218301310016077

    Article  ADS  CAS  Google Scholar 

  30. P. Napolitani, K.-H. Schmidt et al., Measurement of the complete nuclide production and kinetic energies of the system 136Xe+hydrogen at 1 GeV per nucleon. Phys. Rev. C 76, 064609 (2007). https://doi.org/10.1103/PhysRevC.76.064609

    Article  ADS  CAS  Google Scholar 

  31. A. Ergun, H. Imal et al., Influence of angular momentum and Coulomb interaction of colliding nuclei on their multifragmentation. Phys. Rev. C 92, 014610 (2015). https://doi.org/10.1103/PhysRevC.92.014610

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank W. Trautmann and Y. Leifels for stimulating discussions and encouragement for this study.

Author information

Authors and Affiliations

Authors

Contributions

We have many published papers with the same authors, and they all confirmed this submission. All authors reviewed the manuscript. I confirm, as the corresponding author that all the authors in the list have equally contributed to this paper, especially as follows: RO: investigation, calculations, writing, fitting, conceptualization; ASB: investigation, calculations, writing, conceptualization; MB: investigation, supervision, reviewing; NB: investigation, supervision, reviewing; AE: investigation, calculations, fitting; HI: investigation, calculations, fitting.

Corresponding author

Correspondence to R. Ogul.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogul, R., Botvina, A.S., Bleicher, M. et al. Isospin Correlations in Isotope Yields at Intermediate and High Energy Heavy-Ion Collisions. Few-Body Syst 65, 22 (2024). https://doi.org/10.1007/s00601-024-01885-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-024-01885-6

Navigation