Skip to main content
Log in

Characteristics of Heavy-Ion Fragmentation Reactions at Fermi Energies

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Heavy-ion-induced projectile fragmentation reactions at Fermi energies are of interest to investigate the properties of nuclei far from the valley of stability and are useful for various applications. It is therefore of interest to understand in detail the production mechanism. Here we treat such reactions in a microscopic approach, which consists of several steps: initialization of ground states of the colliding nuclei, dynamical evolution until the freeze-out point where the primary fragments can be identified, calculation of the excitation energy of the primary fragments, and their de-excitation by emission of particles and radiation. For the dynamical evolution we use a Boltzmann–Vlasov type transport method, and for the de-excitation a statistical multi-fragmentation description. We apply this approach to collisions of light projectile nuclei on various target, and calculate isotope distributions and velocity spectra of the produced isotopes. Here we compare the results of our calculations to experimental data for collisions of 22Ne beams of 40 A MeV on targets of 181Ta and 9Be.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. Summerer and B. Blank, “Modified empirical parametrization of fragmentation cross sections,” Phys. Rev. C 61, 034607 (2000).

    Article  ADS  Google Scholar 

  2. B. Mei. “Improved empirical parameterization for projectile fragmentation cross sections,” Phys. Rev. C 95, 034608 (2017).

    Article  ADS  Google Scholar 

  3. J. D. Bowman, W. J. Swiatecki, and C. F. Tsang, “Abrasion and ablation of heavy ion,” LBL Report LBL-2908 (LBL, 1973).

  4. C. W. Ma, H. L. Wei, J. Y. Wang, G. J. Liu, Y. Fu, D. Q. Fang, W. D. Tian, X. Z. Cai, H. W. Wang, and Y. G. Ma, “Isospin dependence of projectile-like fragment production at intermediate energies,” Phys. Rev. C 79, 034606 (2009).

    Article  ADS  Google Scholar 

  5. D. Lacroix, A. V. Lauwe, and D. Durand, “Event generator for nuclear collisions at intermediate energies,” Phys. Rev. C 69., 054604-1-12 (2004).

    Article  ADS  Google Scholar 

  6. M. Veselsky, R. W. Ibbotson, R. Laforest, E. Ramakrishnan, D. J. Rowland, A. Ruangma, E. M. Winchester, E. Martin, and S. J. Yennello, “Inhomogeneous isospin distribution in the reactions of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon,” Phys. Rev. C 62, 041605(R) (2000).

  7. G. F. Bertsch and S. Das Gupta, “A guide to microscopic models for intermediate-energy heavy ion collisions,” Phys. Rep. 160, 189—233 (1988).

    Article  ADS  Google Scholar 

  8. T. I. Mikhailova, B. Erdemchimeg, A. G. Artukh, M. Di Toro, Yu. M. Sereda, and H. H. Wolter, “Heavy ion fragmentation reactions at energies of 35–140 MeV in a combined transport and statistical approach,” EPJ Web Conf. 173,04010 (2017).

  9. T. I. Mikhailova, B. Erdemchimeg, A. G. Artukh, M. Di Toro, and H. H. Wolter, “Combined transport and statistical description of heavy-ion fragmentation reactions,” Acta Phys. Polon. B 12, 619—628 (2019).

    Article  Google Scholar 

  10. T. I. Mikhailova, B. Erdemchimeg, A. G. Artukh, M. Di Toro, and H. H. Wolter, “Projectile fragmentation and isotopic scaling in a transport approach,” Acta Phys. Polon. (Proc. Suppl.) 10, 121–130 (2017).

  11. T. I. Mikhailova, B. Erdemchimeg, G. Kaminski, A. G. Artyukh, M. Colonna, M. Di Toro, I. N. Mikhailov, Yu. M. Sereda, and H. H. Wolter, “Asymmetry of velocity distributions in peripheral reactions with heavy ions at Fermi energies,” Bull. Russ. Acad. Sci.: Phys. 73, 852–857 (2009);

    Article  Google Scholar 

  12. T. I. Mikhailova, B. Erdemchimeg, G. Kaminski, A. G. Artyukh, M. Colonna, M. Di Toro, Yu. M. Sereda, and H. H. Wolter, “Dissipative processes in peripheral heavy ion collisions at Fermi energies,” Bull. Russ. Acad. Sci.: Phys. 75, 1511–1516 (2011).

    Article  Google Scholar 

  13. A. Artukh, G. F. Gridnev, S. Klygin, V. Maidikov, S. Perov, A. Semchenkov, O. V. Semchenkova, Yu. Sereda, Y. Teterev, I. Vishnevski, A. Vorontsov, A. Budzanowski, M. Gruszecki, F. Koscielniak, and J. Szmider, “Forward-angle yields of isotopes with 3 ≤ Z ≤10 in the reaction of 22 Ne (40 A MeV) with 9Be,” in Proceedings of International Symposium on Exotic Nuclei (Lake Baikal, Russia. 2001), Eds. Yu. E. Penionzhkevich and E. A. Cherepanov (World Sci., Singapore, 2002), pp. 269–272.

  14. O. Buss, T. Gaitanos, K. Gallmeister, H. Van Hees, M. Kaskulov, O. Lalakulich, A. Larionov, T. Leitner, J. Weil, and U. Mosel, “Transport-theoretical description of nuclear reactions,” Phys. Rep. 512, 1 (2012).

    Article  ADS  Google Scholar 

  15. M. Di Toro, V. Baran, M. Colonna, and V. Greco, “Reaction dynamics with exotic nuclei,” Phys. Rep. 410, 335—466 (2005).

    Article  ADS  Google Scholar 

  16. R. J. Lenk and V. R. Pandharipande, “Nuclear mean field dynamics in the lattice Hamiltonian Vlasov method,” Phys. Rev. 39, 2242—2249 (1989).

    ADS  Google Scholar 

  17. J. P. Bondorf, A. S. Botvina, A. S. Iljinov, I. N. Mishustin, and K. Sneppen, “Statistical multifragmentation of nuclei,” Phys. Rep. 257, 134—221 (1995).

    Article  ADS  Google Scholar 

  18. M. Colonna, “Collision dynamics at medium and relativistic energies,” Prog. Part. Nucl. Phys. 113, 103774 (2020).

    Article  Google Scholar 

  19. T. I. Mikhailova, B. Erdemchimeg, A. G. Artyukh, M. Colonna, M. Di Toro, G. Kaminsky, Yu. M. Sereda, and H. H. Wolter, “Fragment production in peripheral heavy-ion reactions at Fermi energies in transport models,” Int. J. Mod. Phys. E 19, 678—684 (2010).

    Article  ADS  Google Scholar 

  20. V. Borrel, B. Gatty, D. Guerreau, J. Galin, and D. Jacquet, “Projectile like fragment production in Ar induced reactions around the Fermi energy,” Z. Phys. A 324, 217—225 (1986).

    ADS  Google Scholar 

  21. A. S. Goldhaber, “Statistical models of fragmentation processes,” Phys. Lett. B 53, 306 (1974).

    Article  ADS  Google Scholar 

  22. O. Tarasov, “Analysis of momentum distributions of projectile fragmentation products,” Nucl. Phys. A 734, 536—540 (2004).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank A. Botvina for providing us the computer code SMM. Authors thank Drs. A.G. Artukh (deceased) and Yu. M. Sereda for interesting discussions and Prof. I.V. Puzynin and Dr. E. Ayryan for interest in this work and valuable discussions.

Funding

This work was supported (T.M. and E.B.) by RFBR and MECSS under Grant no. 20-51-44001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Mikhailova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailova, T.I., Erdemchimeg, B., Di Toro, M. et al. Characteristics of Heavy-Ion Fragmentation Reactions at Fermi Energies. Phys. Part. Nuclei 54, 510–516 (2023). https://doi.org/10.1134/S106377962303022X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377962303022X

Navigation