Skip to main content
Log in

Femtoscopy of the Matter Distribution in the Proton

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

This communication is a follow-up on our previous study [Few Body Syst. 61, 49 (2020)] suggesting the use of femtoscopic measurements of \(J/\psi \)-proton correlation functions in high-energy hadron collisions to access information on the origin of the proton’s mass. The QCD multipole expansion allows us to express the \(J/\psi \)-proton scattering amplitude in terms of the product of the \(J/\psi \) chromopolarizability and a scalar gluon gravitational (GFF) form factor. The scalar gluon GFF gives the gluonic contribution to the nucleon mass and determines the corresponding matter radius. We show that \(J/\psi \)-proton femtoscopic correlation function displays clear sensitivity to the scalar gluon GFF for a wide range of the \(J/\psi \) chromopolarizability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The difference between the \(J/\psi \) mass and the nearest open charm threshold, \(\Delta E_{J/\psi } = 2 M_D - M_{J/\psi }\).

References

  1. M.S. Chanowitz, J.R. Ellis, Phys. Lett. B 40, 397 (1972)

    Article  ADS  Google Scholar 

  2. D.Z. Freedman, I.J. Muzinich, E.J. Weinberg, Ann. Phys. 87, 95 (1974)

    Article  ADS  Google Scholar 

  3. J.C. Collins, A. Duncan, S.D. Joglekar, Phys. Rev. D 16, 438 (1977)

    Article  ADS  Google Scholar 

  4. N.K. Nielsen, Nucl. Phys. B 120, 212 (1977)

    Article  ADS  Google Scholar 

  5. M. Shifman, A. Vainshtein, V. Zakharov, Phys. Lett. B 78(4), 443 (1978)

    Article  ADS  Google Scholar 

  6. J.M. Alarcón, Eur. Phys. J. ST 230(6), 1609 (2021)

    Article  Google Scholar 

  7. M. Ding, C.D. Roberts, S.M. Schmidt, Particles 6, 57 (2023)

    Article  Google Scholar 

  8. C.D. Roberts, Few Body Syst. 58(1), 5 (2017)

    Article  ADS  Google Scholar 

  9. A.P. Szczepaniak, E.S. Swanson, Phys. Rev. Lett. 87, 072001 (2001)

    Article  ADS  Google Scholar 

  10. J. Vijande, J.M. Richard, A. Valcarce, Springer Proc. Phys. 238, 755 (2020)

    Article  Google Scholar 

  11. F. Fernández, J. Segovia, Symmetry 13(2), 252 (2021)

    Article  ADS  Google Scholar 

  12. G. Krein, T.C. Peixoto, Few Body Syst. 61(4), 49 (2020)

    Article  ADS  Google Scholar 

  13. U.W. Heinz, B.V. Jacak, Ann. Rev. Nucl. Part. Sci. 49, 529 (1999)

    Article  ADS  Google Scholar 

  14. M.A. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Ann. Rev. Nucl. Part. Sci. 55, 357 (2005)

    Article  ADS  Google Scholar 

  15. S. Koonin, Phys. Lett. B 70, 43 (1977)

    Article  ADS  Google Scholar 

  16. R. Lednicky, V. Lyuboshits, Sov. J. Nucl. Phys. 35, 770 (1982)

    Google Scholar 

  17. M.E. Peskin, Nucl. Phys. B 156, 365 (1979)

    Article  ADS  Google Scholar 

  18. G. Bhanot, M.E. Peskin, Nucl. Phys. B 156, 391 (1979)

    Article  ADS  Google Scholar 

  19. A. Kaidalov, P. Volkovitsky, Phys. Rev. Lett. 69, 3155 (1992)

    Article  ADS  Google Scholar 

  20. M.E. Luke, A.V. Manohar, M.J. Savage, Phys. Lett. B 288, 355 (1992)

    Article  ADS  Google Scholar 

  21. D. Kharzeev, Proc. Int. Sch. Phys. Fermi 130, 105 (1996)

    Google Scholar 

  22. A. Sibirtsev, M. Voloshin, Phys. Rev. D 71, 076005 (2005)

    Article  ADS  Google Scholar 

  23. H. Pagels, Phys. Rev. 144, 1250 (1966)

    Article  ADS  Google Scholar 

  24. V.D. Burkert, L. Elouadrhiri, F.X. Girod, C. Lorcé, P. Schweitzer, P.E. Shanahan, arXiv:2303.08347 [hep-ph] (2023)

  25. D.E. Kharzeev, Phys. Rev. D 104(5), 054015 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  26. D. Kharzeev, H. Satz, A. Syamtomov, G. Zinovjev, Eur. Phys. J. C 9, 459 (1999)

    Article  ADS  Google Scholar 

  27. B. Duran et al., Nature 615(7954), 813 (2023)

    Article  ADS  Google Scholar 

  28. B. Duran, The \(j/\psi \)-007 experiment: a search for the LHCb charm Pentaquarks in Hall C at Jefferson Lab (Temple University, Philadelphia, USA, Ph.D., 2021)

  29. A. Ali et al., Phys. Rev. Lett. 123(7), 072001 (2019)

    Article  ADS  Google Scholar 

  30. L. Fabbietti, V. Mantovani Sarti, O. Vazquez Doce, Ann. Rev. Nucl. Part. Sci. 71, 377 (2021)

    Article  ADS  Google Scholar 

  31. Y.Z. Xu, S. Chen, Z.Q. Yao, D. Binosi, Z.F. Cui, C.D. Roberts, Eur. Phys. J. C 81(10), 895 (2021)

    Article  ADS  Google Scholar 

  32. S. Pratt, Phys. Rev. Lett. 53, 1219 (1984)

    Article  ADS  Google Scholar 

  33. H. Bethe, Phys. Rev. 76, 38 (1949)

    Article  ADS  Google Scholar 

  34. S.K. Adhikari, Eur. J. Phys. 39(5), 055403 (2018)

    Article  Google Scholar 

  35. G. Krein, EPJ Web Conf. 274, 04003 (2022)

    Article  Google Scholar 

  36. V.A. Novikov, M.A. Shifman, Z. Phys. C 8, 43 (1981)

    Article  ADS  Google Scholar 

  37. J. Haidenbauer, Nucl. Phys. A 981, 1 (2019)

    Article  ADS  Google Scholar 

  38. J. Haidenbauer, G. Krein, T. Peixoto, Eur. Phys. J. A 56(7), 184 (2020)

    Article  ADS  Google Scholar 

  39. J. Tarrús Castellà, G. Krein, Phys. Rev. D 98(1), 014029 (2018)

    Article  ADS  Google Scholar 

  40. E. Chizzali, Y. Kamiya, R. Del Grande, T. Doi, L. Fabbietti, T. Hatsuda, Y. Lyu, arXiv:2212.12690 [nucl-ex] (2022)

  41. H. Fujii, D. Kharzeev, Phys. Rev. D 60, 114039 (1999)

    Article  ADS  Google Scholar 

  42. X.H. Liu, F.K. Guo, E. Epelbaum, Eur. Phys. J. C 73(1), 2284 (2013)

    Article  ADS  Google Scholar 

  43. K. Yokokawa, S. Sasaki, T. Hatsuda, A. Hayashigaki, Phys. Rev. D 74, 034504 (2006)

    Article  ADS  Google Scholar 

  44. L. Liu, H.W. Lin, K. Orginos, PoS LATTICE2008, 112 (2008)

Download references

Acknowledgements

This work was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grants Nos. 309262/2019-4 and 464898/2014-5; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Grant No. 2018/25225-9.

Author information

Authors and Affiliations

Authors

Contributions

I am the sole author—I produced all the material comprising the paper.

Corresponding author

Correspondence to Gastão Krein.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krein, G. Femtoscopy of the Matter Distribution in the Proton. Few-Body Syst 64, 42 (2023). https://doi.org/10.1007/s00601-023-01829-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01829-6

Navigation