Skip to main content
Log in

An Impact Study on the Pion Structure Measurement at EicC

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

An Electron-ion collider in China (EicC) has recently been proposed, for imaging the precise and detailed internal structures of hadrons, understanding the emergent properties of nucleon (such as the nucleon mass and spin) and the emergence of nuclear medium effect, and studying the exotic hadronic states. By exploiting the abundant “pion cloud” around the proton, an experiment of measuring the pion structure is suggested, and it is one of the physics highlights at the EicC facility. In this paper, we present a simulation study of the proposed pion structure experiment. At EicC, the pion structure information is accessed via the leading-neutron tagged deep inelastic scattering—the widely acknowledged Sullivan process of pion exchange with small momentum transfer. We briefly discuss the theoretical framework of our event generator and the current design of the experimental setup for the experiment. We then evaluate the statistical errors of the pion structure function that would be extracted from the proposed measurement under the integrated luminosity of 50 fb\(^{-1}\). The sensitivity and precision to pion parton distribution functions are also demonstrated with a global fit. The precise quark distributions of the pion can be achieved at EicC in the range of \(0.05<x_{\pi }<0.95\), and the pion gluon distribution also can be constrained by the global fit of the pseudo-data at various \(Q^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.P. Anderle et al., Front. Phys. (Beijing) 16(6), 64701 (2021). https://doi.org/10.1007/s11467-021-1062-0

    Article  ADS  Google Scholar 

  2. R. Abdul Khalek et al., Nucl. Phys. A 1026, 122477 (2022). https://doi.org/10.1016/j.nuclphysa.2022.122447

    Article  Google Scholar 

  3. A. Accardi et al., Eur. Phys. J. A 52(9), 268 (2016). https://doi.org/10.1140/epja/i2016-16268-9

    Article  ADS  Google Scholar 

  4. G. Xie, M. Li, C. Han, R. Wang, X. Chen, Chin. Phys. C 45(5), 053002 (2021). https://doi.org/10.1088/1674-1137/abe8cf

    Article  ADS  Google Scholar 

  5. R. Wang, X. Chen, Few Body Syst. 63(2), 48 (2022). https://doi.org/10.1007/s00601-022-01751-3

    Article  ADS  Google Scholar 

  6. Y. Nambu, Phys. Rev. 117, 648 (1960). https://doi.org/10.1103/PhysRev.117.648

    Article  ADS  MathSciNet  Google Scholar 

  7. J. Goldstone, A. Salam, S. Weinberg, Phys. Rev. 127, 965 (1962). https://doi.org/10.1103/PhysRev.127.965

    Article  ADS  MathSciNet  Google Scholar 

  8. J.M. Cornwall, Phys. Rev. D 26, 1453 (1982). https://doi.org/10.1103/PhysRevD.26.1453

    Article  ADS  Google Scholar 

  9. C.D. Roberts, A.G. Williams, Prog. Part. Nucl. Phys. 33, 477 (1994). https://doi.org/10.1016/0146-6410(94)90049-3

    Article  ADS  Google Scholar 

  10. P. Maris, C.D. Roberts, Phys. Rev. C 56, 3369 (1997). https://doi.org/10.1103/PhysRevC.56.3369

    Article  ADS  Google Scholar 

  11. P. Maris, C.D. Roberts, P.C. Tandy, Phys. Lett. B 420, 267 (1998). https://doi.org/10.1016/S0370-2693(97)01535-9

    Article  ADS  Google Scholar 

  12. X. Gao, A.D. Hanlon, S. Mukherjee, P. Petreczky, P. Scior, S. Syritsyn, Y. Zhao, Phys. Rev. Lett. 128(14), 142003 (2022). https://doi.org/10.1103/PhysRevLett.128.142003

    Article  ADS  Google Scholar 

  13. H.W. Lin, J.W. Chen, Z. Fan, J.H. Zhang, R. Zhang, Phys. Rev. D 103(1), 014516 (2021). https://doi.org/10.1103/PhysRevD.103.014516

    Article  ADS  Google Scholar 

  14. M. Ding, K. Raya, D. Binosi, L. Chang, C.D. Roberts, S.M. Schmidt, Phys. Rev. D 101(5), 054014 (2020). https://doi.org/10.1103/PhysRevD.101.054014

    Article  ADS  Google Scholar 

  15. Z.F. Cui, M. Ding, F. Gao, K. Raya, D. Binosi, L. Chang, C.D. Roberts, J. Rodríguez-Quintero, S.M. Schmidt, Eur. Phys. J. C 80(11), 1064 (2020). https://doi.org/10.1140/epjc/s10052-020-08578-4

    Article  ADS  Google Scholar 

  16. C. Shi, C. Mezrag, H.S. Zong, Phys. Rev. D 98(5), 054029 (2018). https://doi.org/10.1103/PhysRevD.98.054029

    Article  ADS  Google Scholar 

  17. C. Chen, L. Chang, C.D. Roberts, S. Wan, H.S. Zong, Phys. Rev. D 93(7), 074021 (2016). https://doi.org/10.1103/PhysRevD.93.074021

    Article  ADS  Google Scholar 

  18. J. Badier et al., Z. Phys. C 18, 281 (1983). https://doi.org/10.1007/BF01573728

    Article  ADS  Google Scholar 

  19. B. Betev et al., Z. Phys. C 28, 9 (1985). https://doi.org/10.1007/BF01550243

    Article  ADS  Google Scholar 

  20. J.S. Conway et al., Phys. Rev. D 39, 92 (1989). https://doi.org/10.1103/PhysRevD.39.92

    Article  ADS  Google Scholar 

  21. S. Chekanov et al., Nucl. Phys. B 637, 3 (2002). https://doi.org/10.1016/S0550-3213(02)00439-X

    Article  ADS  Google Scholar 

  22. F.D. Aaron et al., Eur. Phys. J. C 68, 381 (2010). https://doi.org/10.1140/epjc/s10052-010-1369-4

    Article  ADS  Google Scholar 

  23. J.D. Sullivan, Phys. Rev. D 5, 1732 (1972). https://doi.org/10.1103/PhysRevD.5.1732

    Article  ADS  Google Scholar 

  24. H. Holtmann, G. Levman, N.N. Nikolaev, A. Szczurek, J. Speth, Phys. Lett. B 338, 393 (1995)

    Google Scholar 

  25. S.X. Qin, C. Chen, C. Mezrag, C.D. Roberts, Phys. Rev. C 97(1), 015203 (2018). https://doi.org/10.1103/PhysRevC.97.015203

    Article  ADS  Google Scholar 

  26. R. Wang, tagged-neutron-dis (2023). https://github.com/rong-wang-impcas/tagged-neutron-DIS

  27. P.C. Barry, N. Sato, W. Melnitchouk, C.R. Ji, Phys. Rev. Lett. 121(15), 152001 (2018). https://doi.org/10.1103/PhysRevLett.121.152001

    Article  ADS  Google Scholar 

  28. G. Xie, C. Han, R. Wang, X. Chen, Chin. Phys. C 46(6), 064107 (2022). https://doi.org/10.1088/1674-1137/ac5b0e

    Article  ADS  Google Scholar 

  29. C. Han, G. Xie, R. Wang, X. Chen, Eur. Phys. J. C 81(4), 302 (2021). https://doi.org/10.1140/epjc/s10052-021-09087-8

    Article  ADS  Google Scholar 

  30. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  31. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  32. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977). https://doi.org/10.1016/0550-3213(77)90384-4

    Article  ADS  Google Scholar 

  33. M. Botje, Comput. Phys. Commun. 182, 490 (2011). https://doi.org/10.1016/j.cpc.2010.10.020

    Article  ADS  Google Scholar 

  34. J. Pumplin, D. Stump, R. Brock, D. Casey, J. Huston, J. Kalk, H.L. Lai, W.K. Tung, Phys. Rev. D 65, 014013 (2001). https://doi.org/10.1103/PhysRevD.65.014013

    Article  ADS  Google Scholar 

  35. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 28, 455 (2003). https://doi.org/10.1140/epjc/s2003-01196-2

    Article  ADS  Google Scholar 

  36. A.C. Aguilar et al., Eur. Phys. J. A 55(10), 190 (2019). https://doi.org/10.1140/epja/i2019-12885-0

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Profs. Craig D. Roberts and Tanja Horn for the fruitful discussions and the constructive questions. We are also very grateful to Dr. Jixie Zhang for his friendly help in the simulation and the cross-checks. This work is partly supported by the Strategic Priority Research Program of Chinese Academy of Sciences under the Grant NO. XDB34030301 and the National Natural Science Foundation of China under the Grant NO. 12005266.

Author information

Authors and Affiliations

Authors

Contributions

RW wrote the main manuscript text. RW and GX did the simulation and the data analysis. WX and YL prepared the Figs. 3 and 4. WX, YL and XC gave many valueable suggestions on the physics, the proposal of the experiment, and the analysis of the simulation data. All authors reviewed the manuscript.

Corresponding author

Correspondence to Rong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Xie, G., Xiong, W. et al. An Impact Study on the Pion Structure Measurement at EicC. Few-Body Syst 64, 28 (2023). https://doi.org/10.1007/s00601-023-01811-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01811-2

Navigation