Skip to main content
Log in

Mass-Spectroscopy of Hidden Charm and Hidden Strange Tetraquarks in Diquark-Antidiquark Approach

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We investigated the four-quark systems with quark structures of \(cs\bar{c}\bar{s}\), \(cq\bar{c}\bar{s}\), \(bs\bar{b}\bar{s}\), and \(bq\bar{b}\bar{s}\) in the framework of the non-relativistic quark model, motivated by the recent observation of exotic resonances X(4140), X(4274), X(4350), X(4500), and X(4700) reported by several experiment collaborations. The colour antitriplet-triplet configuration of diquark-antidiquark combinations with all conceivable quantum numbers have been used to calculate their masses. The results reveal that if the colour structure of the diquark-antidiquark configuration is \(\bar{3}_{c} \otimes 3\), the tetraquarks structures may occur otherwise may observed as resonance. The X(4274) state, can be defined as the \(J^{PC}=2^{++}\) tetraquark state, while the X(4140) state can be regarded as the \(J^{PC}=1^{++}\) tetraquark state in this calculation. When radial excitation is considered, X(4700) may be explained as a 2 S radial excited tetraquark state with \(J^{PC}=0^{++}\). The orbitally excited states Y(4626), Y(4630) and Y(4660) can be explained as P-wave tetraquark with quantum number \(1^{{-}{-}}\). The masses of [\(bs\bar{b}\bar{s}\)] and [\(bq\bar{b}\bar{s}\)] are found to be in the range between 10.5 and 11.5 GeV and are very close to two-meson thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gell-Mann, Phys. Lett. 8, 214–215 (1964)

    ADS  Google Scholar 

  2. S.L. Olsen, T. Skwarnicki, D. Zieminska, Rev. Mod. Phys. 90, 015003 (2018)

    ADS  Google Scholar 

  3. P. Zyla et al., (Particle Data Group), Prog. Theor. Exp. Phys., 083C01 (2020)

  4. R.F. Lebed, R.E. Mitchell, E.S. Swanson, Prog. Part. Nucl. Phys. 93, 143–194 (2017)

    ADS  Google Scholar 

  5. M. Cleven et al., Phys. Rev. D 92, 014005 (2015)

    ADS  Google Scholar 

  6. X.-Z. Weng et al., Chin. Phys. C 46, 013102 (2022)

    ADS  Google Scholar 

  7. H.X. Chen et al., Phys. Rept. 639, 1 (2016)

    ADS  Google Scholar 

  8. N. Brambilla et al., Phys. Rept. 873, 1–154 (2020)

    ADS  Google Scholar 

  9. A. Esposito, A. Pilloni, A.D. Polosa, Phys. Rept. 668, 1 (2017)

    ADS  Google Scholar 

  10. S.K. Choi et al., LEPS collaboration. Phys. Rev. Lett. 91, 262001 (2003)

    ADS  Google Scholar 

  11. R. Aaij et al., LHCb collaboration. Scib 65, 1983 (2020)

    Google Scholar 

  12. B. Aubert et al., BABAR collaboration. Phys. Rev. Lett. 95, 142001 (2005)

    ADS  Google Scholar 

  13. Z.Q. Liu et al., Belle collaboration. Phys. Rev. Lett. 110, 252002 (2013)

    ADS  Google Scholar 

  14. T. Aaltonen et al., CDF collaboration. Phys. Rev. Lett. 102, 242002 (2009)

    ADS  Google Scholar 

  15. C.P. Shen et al., Belle collaboration. Phys. Rev. Lett. 104, 112004 (2010)

    ADS  Google Scholar 

  16. R. Aaij et al., LHCb collaboration. Phys. Rev. D 85, 091103 (2012)

    ADS  Google Scholar 

  17. V.M. Abazov et al., D0 collaboration. Phys. Rev. D 89, 012004 (2014)

    ADS  Google Scholar 

  18. S. Chatrchyan et al., CMS collaboration. Phys. Lett. B 734, 261 (2014)

    ADS  Google Scholar 

  19. T. Aaltonen et al., CDF collaboration. Mod. Phys. Lett. A 32, 1750139 (2017)

    ADS  Google Scholar 

  20. R. Aaij et al., LHCb collaboration. Phys. Rev. Lett. 118, 022003 (2017)

    ADS  Google Scholar 

  21. R. Aaij et al., LHCb collaboration. Phys. Rev. D 95, 012002 (2017)

    ADS  Google Scholar 

  22. S. Jia et al., Belle collaboration. Phys. Rev. D 100, 111103 (2019)

    ADS  Google Scholar 

  23. X.L. Wang et al., Belle collaboration. Phys. Rev. Lett. 99, 142002 (2007)

    ADS  Google Scholar 

  24. G. Pakhlova et al., Belle collaboration. Phys. Rev. Lett. 101, 172001 (2008)

    ADS  Google Scholar 

  25. Y. Tan, J.L. Ping, Phys. Rev. D 101, 054010 (2020)

    ADS  Google Scholar 

  26. J. He et al., Eur. Phys. J. C 246, 80 (2020)

    Google Scholar 

  27. C. Deng, H. Chen, J. Ping, Phys. Rev. D 101, 054039 (2020)

    ADS  Google Scholar 

  28. Y. Yang, J. Ping, Phys. Rev. D 99, 094032 (2019)

    ADS  Google Scholar 

  29. M.Y. Barabanov et al., Prog. Part. Nucl. Phys. 116, 103835 (2021)

    Google Scholar 

  30. Y.R. Liu et al., Prog. Part. Nucl. Phys. 107, 237–320 (2019)

    ADS  Google Scholar 

  31. Q.-F. Lü, Y.-B. Dong, Phys. Rev. D 94, 074007 (2016)

    ADS  Google Scholar 

  32. C.R. Deng et al., Phys. Rev. D 98, 014026 (2018)

    ADS  Google Scholar 

  33. M. Karliner, J.L. Rosner, Phys. Rev. Lett. 115, 122001 (2015)

    ADS  Google Scholar 

  34. M. Karliner, J.L. Rosner, Nucl. Phys. A 954, 365 (2016)

    ADS  Google Scholar 

  35. R.M. Albuquerque, M. Nielsen, Nucl. Phys. A 815, 53 (2009)

    ADS  Google Scholar 

  36. F. Stancu, J. Phys. G 37, 075017 (2010)

    ADS  Google Scholar 

  37. J. Wu et al., Phys. Rev. D 94, 094031 (2016)

    ADS  Google Scholar 

  38. W. Chen, S.L. Zhu, Phys. Rev. D 83, 034010 (2011)

    ADS  Google Scholar 

  39. H.X. Chen et al., Eur. Phys. J. C 77, 160 (2017)

    ADS  Google Scholar 

  40. W. Chen et al., Phys. Rev. D 96, 114017 (2017)

    ADS  Google Scholar 

  41. P.G. Ortega et al., Phys. Rev. D 94, 114018 (2016)

    ADS  Google Scholar 

  42. Y.F. Yang, J.L. Ping, Phys. Rev. D 99, 094032 (2019)

    ADS  Google Scholar 

  43. R.F. Lebed, A.D. Polosa, Phys. Rev. D 93, 094024 (2016)

    ADS  Google Scholar 

  44. M. Padmanath, C.B. Lang, S. Prelovsek, Phys. Rev. D 92, 034501 (2015)

    ADS  Google Scholar 

  45. E. Braaten, C. Langmack, D.H. Smith, Phys. Rev. D 90, 014044 (2014)

    ADS  Google Scholar 

  46. R.N. Faustov, V.O. Galkin, E.M. Savchenko, Universe 7, 94 (2021)

    ADS  Google Scholar 

  47. G. Yang, J. Ping, J. Segovia, Phys. Rev. D 101, 014001 (2020)

    ADS  Google Scholar 

  48. A. Hosaka, Prog. Theor. Exp. Phys., 062C01 (2016)

  49. R. Tiwari, D.P. Rathaud, A.K. Rai, Eur. Phys. J. A 57, 289 (2021)

    ADS  Google Scholar 

  50. R. Tiwari, D.P. Rathaud, A.K. Rai, Indian J. Phys. 96, 1–22 (2022)

    Google Scholar 

  51. M.N. Anwar et al., Eur. Phys. J. C 78, 647 (2018)

    ADS  Google Scholar 

  52. A.V. Berezhnoy, A.V. Luchinsky, A.A. Novoselov, Phys. Rev. D 86, 034004 (2012)

    ADS  Google Scholar 

  53. W. Chen et al., Phys. Lett. B 773, 247 (2017)

    ADS  Google Scholar 

  54. J.-M. Richard, A. Valcarce, J. Vijande, Phys. Rev. D 95, 054019 (2017)

    ADS  Google Scholar 

  55. H.J. Lipkin, Phys. Lett. B 172, 242 (1986)

    ADS  MathSciNet  Google Scholar 

  56. J.P. Ader, J.M. Richard, P. Taxil, Phys. Rev. D 25, 2370 (1982)

    ADS  Google Scholar 

  57. M. Karliner, J.L. Rosner, Phys. Rev. Lett. 119, 202001 (2017)

    ADS  Google Scholar 

  58. E.J. Eichten, C. Quigg, Phys. Rev. Lett. 119, 202002 (2017)

    ADS  Google Scholar 

  59. A. Czarnecki, B. Leng, M.B. Voloshin, Phys. Lett. B 778, 233 (2018)

    ADS  Google Scholar 

  60. S.Q. Luo et al., Eur. Phys. J. C 77, 709 (2017)

    ADS  Google Scholar 

  61. L. Maiani, A.D. Polosa, V. Riquer, Phys. Rev. D 100, 014002 (2019)

    ADS  MathSciNet  Google Scholar 

  62. V. Debastiani, F. Navarra, Chin. Phys. C 43, 013105 (2019)

    ADS  Google Scholar 

  63. G. Yang, J. Ping, J. Segovia, Symmetry 12, 1869 (2020)

    ADS  Google Scholar 

  64. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985)

    ADS  Google Scholar 

  65. W. Lucha, F.F. Schöberl, Int. J. Mod. Phys. C 10, 607 (1999)

    ADS  Google Scholar 

  66. P. Lundhammar, T. Ohlsson, Phys. Rev. D 102, 054018 (2020)

    ADS  Google Scholar 

  67. M. Furuichi, K. Shimizu, S. Takeuchi, Phys. Rev. C 68, 034001 (2003)

    ADS  Google Scholar 

  68. E. Eichten et al., Phys. Rev. D 21, 203 (1980)

    ADS  Google Scholar 

  69. Y. Koma, M. Koma, H. Wittig, Phys. Rev. Lett 97, 122003 (2006)

    ADS  Google Scholar 

  70. A.K. Rai, D.P. Rathaud, Eur. Phys. J. C 75, 462 (2015)

    ADS  Google Scholar 

  71. A.K. Rai, J.N. Pandya, P.C. Vinodkumar, Nucl. Phys. A 782, 406 (2007)

    ADS  Google Scholar 

  72. V. Kher, A.K. Rai, Chin. Phys. C 42, 083101 (2018)

    ADS  Google Scholar 

  73. D.P. Rathaud, A.K. Rai, Eur. Phys. J. Plus 132, 370 (2017)

    Google Scholar 

  74. D.P. Rathaud, A.K. Rai, Indian J. Phys 90, 1299 (2016)

    ADS  Google Scholar 

  75. D.P. Rathaud and A.K. Rai, Indian J. Phys. https://doi.org/10.1007/s12648-020-01954-6 (2021)

  76. D.P. Rathaud, A.K. Rai, Few-Body Syst. 60, 1 (2019)

    Google Scholar 

  77. M.B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008)

    ADS  Google Scholar 

  78. W. Lucha, F.F. Schöberl, D. Gromes, Phys. Rept. 200, 127 (1991)

    ADS  Google Scholar 

  79. D. Griffiths, Introduction to Elementary Particles, 2nd edn. (Wiley-VCH, 2008)

  80. H.A. Bethe, E.E. Salpether, Quantum Mechanics of Atoms of One- and Two-electrons (Springer, Berlin, 1957)

    Google Scholar 

  81. V.R. Debastiani, Spectroscopy of the All-Charm Tetraquark, Master thesis (2016) https://doi.org/10.11606/D43.2016.tde-08072016-001417

  82. H.-X. Chen et al., Rep. Prog. Phys. 86, 026201 (2023)

    ADS  Google Scholar 

  83. H.-X. Chen et al., Rep. Prog. Phys. Rep. Prog. Phys. 80, 076201 (2017)

    ADS  Google Scholar 

  84. N. Devlani, A.K. Rai, Eur. Phys. J. A 104, 48 (2012)

    Google Scholar 

  85. N. Devlani, A.K. Rai, Phys. Rev. D 87, 014003 (2013)

    ADS  Google Scholar 

  86. V. Kher, N. Devlani, A.K. Rai, Chin. Phys. C 41, 073101 (2017)

    ADS  Google Scholar 

  87. M. Bedolla et al., Eur. Phys. J. C 80, 1004 (2020)

    ADS  Google Scholar 

  88. M. Hadizadeh, A. Khaledi-Nasab, Phys. Lett. B 753, 8 (2016)

    ADS  Google Scholar 

  89. Z.-G. Wang, Eur. Phys. J. C 71, 1524 (2011)

    ADS  Google Scholar 

  90. L. Meng, G.J. Wang, B. Wang, S.L. Zhu, Phys. Rev. D 100, 096013 (2019)

    ADS  Google Scholar 

  91. X. Liu, S.L. Zhu, Phys. Rev. D 80, 017502 (2009)

    ADS  Google Scholar 

  92. T. Branz, T. Gutsche, V.E. Lyubovitskij, Phys. Rev. D 80, 054019 (2009)

    ADS  Google Scholar 

  93. R.M. Albuquerque, M.E. Bracco, M. Nielsen, Phys. Lett. B 678, 186 (2009)

    ADS  Google Scholar 

  94. L. Maiani, A.D. Polosa, V. Riquer, Phys. Rev. D 94, 054026 (2016)

    ADS  Google Scholar 

  95. R.L. Zhu, Phys. Rev. D 94(94), 054009 (2016)

    ADS  Google Scholar 

  96. D.V. Bugg, J. Phys. G 36, 075002 (2009)

    ADS  Google Scholar 

  97. G. Cotugno, R. Faccini, A.D. Polosa, C. Sabelli, Phys. Rev. Lett. 104, 132005 (2010)

    ADS  Google Scholar 

  98. F.K. Guo et al., Phys. Rev. D 82, 094008 (2010)

    ADS  Google Scholar 

  99. M. Ablikim et al., BESIII collaboration. Phys. Rev. Lett. 126, 102001 (2021)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar Rai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, R., Rai, A.K. Mass-Spectroscopy of Hidden Charm and Hidden Strange Tetraquarks in Diquark-Antidiquark Approach. Few-Body Syst 64, 20 (2023). https://doi.org/10.1007/s00601-023-01805-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01805-0

Navigation