Skip to main content
Log in

Radiative Corrections to Neutron Beta Decay and (Anti)Neutrino-Nucleon Scattering from Low-Energy Effective Field Theory

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We study radiative corrections to neutron beta decay and low-energy (anti)neutrino-nucleon scattering within a top-down effective field theory approach. As it was recently shown, a few electromagnetic and electroweak low-energy coupling constants in heavy-baryon chiral perturbation theory are yet to be determined. Performing matching to the four-fermion effective field theory, we relate these low-energy constants to correlation functions of vector and axial-vector currents. Such relations allow us to explicitly clarify scheme dependence for radiative corrections to neutron decay and low-energy charged-current (anti)neutrino scattering, provide a robust prediction of leading in the electromagnetic coupling constant contributions, and achieve a clear separation between short-distance and long-distance contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The same ultraviolet divergences appear in the static limit of the (anti)neutrino-nucleon scattering [17, 24,25,26].

  2. For evaluation of low-energy QED diagrams in the conventional to \(\chi \textrm{PT}\) \(\overline{\textrm{MS}}\) scheme [13, 16], we substitute \(\hat{C}_{V,A}\).

  3. Coincidentally, the same constant term \(-11/8\) is obtained in Ref. [49].

References

  1. F.E. Wietfeldt, Atoms 6(4), 70 (2018)

    ADS  Google Scholar 

  2. D. Castelvecchi, Nature 598, 549 (2021)

    ADS  Google Scholar 

  3. F.M. Gonzalez et al., [UCNT\(_\tau \)]Phys. Rev. Lett. 127(16), 162501 (2021)

    ADS  Google Scholar 

  4. W.J. Marciano, A. Sirlin, Phys. Rev. Lett. 96, 032002 (2006)

    ADS  Google Scholar 

  5. C.Y. Seng, M. Gorchtein, H.H. Patel, M.J. Ramsey-Musolf, Phys. Rev. Lett. 121(24), 241804 (2018)

    ADS  Google Scholar 

  6. C.Y. Seng, M. Gorchtein, M.J. Ramsey-Musolf, Phys. Rev. D 100(1), 013001 (2019)

    ADS  Google Scholar 

  7. A. Czarnecki, W.J. Marciano, A. Sirlin, Phys. Rev. D 100(7), 073008 (2019)

    ADS  Google Scholar 

  8. C.Y. Seng, X. Feng, M. Gorchtein, L.C. Jin, Phys. Rev. D 101(11), 111301 (2020)

    ADS  Google Scholar 

  9. L. Hayen, Phys. Rev. D 103(11), 113001 (2021)

    ADS  MathSciNet  Google Scholar 

  10. K. Shiells, P.G. Blunden, W. Melnitchouk, Phys. Rev. D 104(3), 033003 (2021)

    ADS  Google Scholar 

  11. L. Hayen, arXiv:2102.03458 [hep-ph]

  12. M. Gorchtein, C.Y. Seng, JHEP 10, 053 (2021)

    ADS  Google Scholar 

  13. V. Cirigliano, J. de Vries, L. Hayen, E. Mereghetti, A. Walker-Loud, Phys. Rev. Lett. 129(12), 121801 (2022)

    ADS  Google Scholar 

  14. R.J. Hill, O. Tomalak, Phys. Lett. B 805, 135466 (2020)

    MathSciNet  Google Scholar 

  15. W. Dekens, P. Stoffer, JHEP 10, 197 (2019) [erratum: JHEP 11, 148 (2022)]

  16. S. Ando, H.W. Fearing, V.P. Gudkov, K. Kubodera, F. Myhrer, S. Nakamura, T. Sato, Phys. Lett. B 595, 250–259 (2004)

    ADS  Google Scholar 

  17. U. Raha, F. Myhrer, K. Kubodera, Phys. Rev. C 85, 045502 (2012)

    ADS  Google Scholar 

  18. A. Sirlin, Phys. Rev. 164, 1767–1775 (1967)

    ADS  Google Scholar 

  19. V. Bernard, S. Gardner, U.G. Mei, Phys. Lett. B 593, 105–114

  20. T. Kinoshita, A. Sirlin, Phys. Rev. 113, 1652–1660 (1959)

    ADS  Google Scholar 

  21. A. Garcia, M. Maya, Phys. Rev. D 17, 1376–1380 (1978)

    ADS  Google Scholar 

  22. D.H. Wilkinson, Nucl. Phys. A 377, 474–504 (1982)

    ADS  Google Scholar 

  23. A.N. Ivanov, R. Höllwieser, N.I. Troitskaya, M. Wellenzohn, Y.A. Berdnikov, Results Phys. 21, 103806 (2021)

    Google Scholar 

  24. O. Tomalak, Q. Chen, R.J. Hill, K.S. McFarland, Nat. Commun. 13(1), 5286 (2022)

    ADS  Google Scholar 

  25. O. Tomalak, Q. Chen, R.J. Hill, K.S. McFarland, C. Wret, Phys. Rev. D 106(9), 9 (2022)

    Google Scholar 

  26. M. Fukugita, T. Kubota, Acta Phys. Polon. B 35, 1687–1732 (2004)

    ADS  Google Scholar 

  27. S. Descotes-Genon, B. Moussallam, Eur. Phys. J. C 42, 403–417 (2005)

    ADS  Google Scholar 

  28. A. Sirlin, Rev. Mod. Phys. 50, 573 (1978) [erratum: Rev. Mod. Phys. 50, 905 (1978)]

  29. W.J. Marciano, A. Sirlin, Phys. Rev. Lett. 56, 22 (1986)

    ADS  Google Scholar 

  30. A. Czarnecki, W.J. Marciano, A. Sirlin, Phys. Rev. D 70, 093006 (2004)

    ADS  Google Scholar 

  31. V. Cirigliano, A. Crivellin, M. Hoferichter, M. Moulson, [arXiv:2208.11707 [hepph]]

  32. C.Y. Seng, X. Feng, M. Gorchtein, L.C. Jin, U.G. Meißner, JHEP 10, 179 (2020)

    ADS  Google Scholar 

  33. X. Feng, M. Gorchtein, L.C. Jin, P.X. Ma, C.Y. Seng, Phys. Rev. Lett. 124(19), 192002 (2020)

    ADS  Google Scholar 

  34. P.X. Ma, X. Feng, M. Gorchtein, L.C. Jin, C.Y. Seng, Phys. Rev. D 103, 114503 (2021)

    ADS  Google Scholar 

  35. J.S. Yoo, T. Bhattacharya, R. Gupta, S. Mondal, B. Yoon, arXiv:2212.12830 [hep-lat]]

  36. A.J. Buras, P.H. Weisz, Nucl. Phys. B 333, 66–99 (1990)

    ADS  Google Scholar 

  37. M.J. Dugan, B. Grinstein, Phys. Lett. B 256, 239–244 (1991)

    ADS  Google Scholar 

  38. S. Herrlich, U. Nierste, Nucl. Phys. B 455, 39–58 (1995)

    ADS  Google Scholar 

  39. U.G. Meissner, S. Steininger, Phys. Lett. B 419, 403–411 (1998)

    ADS  Google Scholar 

  40. E.S. Abers, D.A. Dicus, R.E. Norton, H.R. Quinn, Phys. Rev. 167, 1461–1478 (1968)

    ADS  Google Scholar 

  41. J. Gasser, M.A. Ivanov, E. Lipartia, M. Mojzis, A. Rusetsky, Eur. Phys. J. C 26, 13–34 (2002)

    ADS  Google Scholar 

  42. X.D. Ji, Nucl. Phys. B 402, 217–250 (1993)

    ADS  Google Scholar 

  43. J. Blumlein, N. Kochelev, Phys. Lett. B 381, 296–304 (1996)

    ADS  Google Scholar 

  44. M. Maul, B. Ehrnsperger, E. Stein, A. Schafer, Z. Phys. A 356, 443–456 (1997)

  45. J. Blumlein, Prog. Part. Nucl. Phys. 69, 28–84 (2013)

    ADS  Google Scholar 

  46. S.D. Drell, J.D. Sullivan, Phys. Rev. 154, 1477–1498 (1967)

    ADS  Google Scholar 

  47. J.D. Bjorken, Phys. Rev. 148, 1467–1478 (1966)

    ADS  Google Scholar 

  48. A.V. Manohar, arXiv:hep-ph/9204208 [hep-ph]

  49. E.S. Abers, D.A. Dicus, R.E. Norton, H.R. Quinn, Phys. Rev. 167, 1461–1478 (1968)

    ADS  Google Scholar 

  50. O. Tomalak, Eur. Phys. J. C 77(8), 517 (2017)

    ADS  Google Scholar 

  51. R. Mertig, M. Bohm, A. Denner, Comput. Phys. Commun. 64, 345–359 (1991)

    ADS  Google Scholar 

  52. V. Shtabovenko, R. Mertig, F. Orellana, Comput. Phys. Commun. 207, 432–444 (2016)

    ADS  Google Scholar 

  53. T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153–165 (1999)

    ADS  Google Scholar 

  54. Wolfram Research, Inc., Mathematica, Version 13.0.1.0, Champaign, IL (2022)

Download references

Acknowledgements

I acknowledge many useful discussions and validations with Emanuele Mereghetti, Vincenzo Cirigliano, Richard Hill, and Wouter Dekens, and useful correspondence with Bastian Kubis. I thank Emanuele Mereghetti and Wouter Dekens for reading this manuscript. This work is supported by the US Department of Energy through the Los Alamos National Laboratory and by LANL’s Laboratory Directed Research and Development (LDRD/PRD) program under projects 20210968PRD4 and 20210190ER. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). FeynCalc [51, 52], LoopTools [53], and Mathematica [54] were extremely useful in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Tomalak.

Ethics declarations

Author contributions

OT wrote the main manuscript text and prepared figures. All help is specified in the Acknowledgements.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

LA-UR-23-20003.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomalak, O. Radiative Corrections to Neutron Beta Decay and (Anti)Neutrino-Nucleon Scattering from Low-Energy Effective Field Theory. Few-Body Syst 64, 23 (2023). https://doi.org/10.1007/s00601-023-01802-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01802-3

Navigation