Skip to main content
Log in

Foldy–Wouthuysen Transformation of Noncommutative Dirac Equation in the Presence of Minimal Uncertainty in Momentum

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this paper, by using the canonical Foldy–Wouthuysen transformation for relativistic spin-1/2 particles, we investigate the non-relativistic limit and determine the basic properties of the Dirac equation in the presence of a minimal uncertainty in momentum within a noncommutative phase-space. This leads to obtaining a deformed Schrödinger– Pauli equation; there, we examine the effect of both the noncommutativity in phase-space and the minimal uncertainty in momentum on the non-relativistic limit of the Dirac equation. However, with both Bopp– Shift linear transformation, and the Moyal– Weyl product (\(\star \)product), we introduce the noncommutativity in phase-space. We as well test the efficacy and behavior of the Foldy– Wouthuysen transformation in deriving the non-relativistic limit under certain conditions and influences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Foldy, S. Wouthuysen, On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. 78, 29 (1950). https://doi.org/10.1103/PhysRev.78.29

    Article  ADS  MATH  Google Scholar 

  2. G. Jansen, B.A. Hess, Revision of the Douglas-Kroll transformation. Phys. Rev. A 39, 6016 (1989). https://doi.org/10.1103/PhysRevA.39.6016

    Article  ADS  Google Scholar 

  3. M. Reiher, Douglas- Kroll- Hess theory: a relativistic electrons-only theory for chemistry. Theor. Chem. Acc. 116, 241 (2006). https://doi.org/10.1007/s00214-005-0003-2

    Article  Google Scholar 

  4. M. Douglas, N.M. Kroll, Quantum electrodynamical corrections to the fine structure of helium. Ann. Phys. 82(1), 89 (1974). https://doi.org/10.1016/0003-4916(74)90333-9

    Article  ADS  Google Scholar 

  5. B.A. Hess, Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. Phys. Rev. A 32(2), 756 (1985). https://doi.org/10.1103/PhysRevA.32.756

    Article  ADS  Google Scholar 

  6. B.A. Hess, Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A 33(6), 3742 (1986). https://doi.org/10.1103/PhysRevA.33.3742

    Article  ADS  Google Scholar 

  7. T. Nakajima, The Douglas- Kroll- Hess approach. Chem. Rev. 112, 385 (2012). https://doi.org/10.1021/cr200040s

    Article  Google Scholar 

  8. E. Eriksen, Transformations of relativistic two-particle equations. Nuovo Cim. 20, 747 (1961). https://doi.org/10.1007/BF02731564

    Article  ADS  MathSciNet  Google Scholar 

  9. W. Greiner, Quantum Mechanics, 3rd edn. (Springer, Berlin, Heidelberg, 1994)

    Book  MATH  Google Scholar 

  10. M. Cini, B. Touschek, The relativistic limit of the theory of spin 1/2 particles. Nuovo Cim. 7, 422 (1958). https://doi.org/10.1007/BF02747708

    Article  ADS  MathSciNet  Google Scholar 

  11. J.A. McClure, D.L. Weaver, A note on the Cini-Touschek transformation. Nuovo Cim. 38, 530 (1965). https://doi.org/10.1007/BF02750480

    Article  MathSciNet  Google Scholar 

  12. M. Baktavatsalou, Sur une transformation de Cayley généralisant les transformations de Foldy-Woathuysen et de Cini-Touschek. Nuovo Cim. 25, 964 (1962). https://doi.org/10.1007/BF02733722

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. P. Gosselin, A. Bérard, H. Mohrbach, Semiclassical diagonalization of quantum Hamiltonian and equations of motion with berry phase corrections. Eur. Phys. J. B 58, 137 (2006). https://doi.org/10.1140/epjb/e2007-00212-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. A.D. Bryden, A Foldy-Wouthuysen transformation for particles of spin 3/2. Nucl. Phys. 53, 165 (1964). https://doi.org/10.1016/0029-5582(64)90594-2

    Article  MathSciNet  MATH  Google Scholar 

  15. D.L. Pursey, A Foldy-Wouthuysen transformation for particles of arbitrary spin. Nucl. Phys. 53, 174 (1964). https://doi.org/10.1016/0029-5582(64)90595-4

    Article  MathSciNet  MATH  Google Scholar 

  16. R.F. Guertin, Foldy-Wouthuysen transformations for any spin. Ann. Phys. 91, 386 (1975). https://doi.org/10.1016/0003-4916(75)90228-6

    Article  ADS  MathSciNet  Google Scholar 

  17. K.M. Case, Some generalizations of the Foldy-Wouthuysen transformation. Phys. Rev. 95, 1323 (1954). https://doi.org/10.1103/PhysRev.95.1323

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. A.J. Silenko, High precision description and new properties of a spin-1 particle in a magnetic field. Phys. Rev. D 89, 121701(R) (2014). https://doi.org/10.1103/PhysRevD.89.121701

    Article  ADS  Google Scholar 

  19. L.L. Foldy, Synthesis of covariant particle equations. Phys. Rev. 102(2), 568 (1956). https://doi.org/10.1103/PhysRev.102.568

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. R. Ekman, F.A. Asenjo, J. Zamanian, Relativistic kinetic equation for spin-1/2 particles in the long-scale-length approximation. Phys. Rev. E (2017). https://doi.org/10.1103/PhysRevE.96.023207

    Article  Google Scholar 

  21. J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964)

    MATH  Google Scholar 

  22. E. de Vries, Foldy-Wouthuysen transformations and related problems. Fortschr. Phys. 18, 149 (1970). https://doi.org/10.1002/prop.19700180402

    Article  Google Scholar 

  23. V.P. Neznamov, On the theory of interacting fields in the Foldy-Wouthuysen representation. Phys. Part. Nuclei 37, 86 (2006). https://doi.org/10.1134/S1063779606010023

    Article  ADS  Google Scholar 

  24. A.Y. Silenko, Dirac equation in the Foldy-Wouthuysen representation describing the interaction of spin-1/2 relativistic particles with an external electromagnetic field. Theor. Math. Phys. 105, 1224 (1995). https://doi.org/10.1007/BF02067491

    Article  MATH  Google Scholar 

  25. P. Gosselin, A. Bérard, H. Mohrbach et al., Berry curvature in graphene: a new approach. Eur. Phys. J. C 59, 883 (2009). https://doi.org/10.1140/epjc/s10052-008-0839-4

    Article  ADS  Google Scholar 

  26. S.A. Khan, The Foldy-Wouthuysen transformation technique in optics. Optik-Int. J. Light Electron Optics 117, 481 (2006). https://doi.org/10.1016/j.ijleo.2005.11.010

    Article  Google Scholar 

  27. A.J. Silenko, O.V. Teryaev, Semiclassical limit for Dirac particles interacting with a gravitational field. Phys. Rev. D (2005). https://doi.org/10.1103/PhysRevD.71.064016

    Article  Google Scholar 

  28. P. Gosselin, A. Bérard, H. Mohrbach, Semiclassical dynamics of Dirac particles interacting with a static gravitational field. Phys. Lett. A 368, 356 (2007). https://doi.org/10.1016/j.physleta.2007.04.022

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. S. Scherer, G.I. Poulis, H.W. Fearing, Low-energy Compton scattering by a proton: comparison of effective Hamiltonians with relativistic corrections. Nucl. Phys. A 570, 686 (1994). https://doi.org/10.1016/0375-9474(94)90079-5

    Article  ADS  Google Scholar 

  30. K.G. Dyall, K. Faegri, Introduction to Relativistic Quantum Chemistry (Oxford University Press, Oxford, 2007)

    Book  Google Scholar 

  31. M. Reiher, A. Wolf, Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science (Wiley-VCH, Weinheim, 2009)

    Book  Google Scholar 

  32. A.G. Nikitin, On exact Foldy-Wouthuysen transformation. J. Phys. A: Math. Gen. 31(14), 3297 (1998). https://doi.org/10.1088/0305-4470/31/14/015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. J.P. Costella, B.H. McKellar, The Foldy- Wouthuysen transformation. Am. J. Phys. 63(12), 1119 (1995). https://doi.org/10.1119/1.18017

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. A.J. Silenko, Foldy- Wouthuysen transformation for relativistic particles in external fields. J. Math. Phys. 44(7), 2952 (2003). https://doi.org/10.1063/1.1579991

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. I. Haouam, On the noncommutative geometry in quantum mechanics. J. Phys. Stud. 24(2), 2002 (2020). https://doi.org/10.30970/jps.24.2002

    Article  Google Scholar 

  36. J. Madore.: An introduction to noncommutative geometry. In: H. Gausterer, L. Pittner, H. Grosse, (eds) Geometry and Quantum Physics. Lecture Notes in Physics, vol 543. (Springer, Berlin, Heidelberg, 2000) https://doi.org/10.1007/3-540-46552-9_5

  37. I. Haouam, S.A. Alavi, Dynamical noncommutative graphene. Int. J. Mod. Phys. A 37(10), 2250054 (2022). https://doi.org/10.1142/S0217751X22500543

    Article  ADS  MathSciNet  Google Scholar 

  38. I. Haouam, H. Hassanabadi, Exact solution of (2+1)-dimensional noncommutative Pauli equation in a time-dependent background. Int. J. Theor. Phys. 61, 215 (2022). https://doi.org/10.1007/s10773-022-05197-5

    Article  MathSciNet  MATH  Google Scholar 

  39. I. Haouam, On the Fisk- Tait equation for spin-3/2 fermions interacting with an external magnetic field in noncommutative space-time. J. Phys. Stud. 24, 1801 (2020). https://doi.org/10.30970/jps.24.1801

    Article  Google Scholar 

  40. R.J. Szabo, Quantum field theory on noncommutative spaces. Phys. Rep. 378(4), 207 (2003). https://doi.org/10.1016/S0370-1573(03)00059-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. N. Seiberg, E. Witten, String theory and noncommutative geometry. J. High Energy Phys. (1999). https://doi.org/10.1088/1126-6708/1999/09/032

    Article  MathSciNet  MATH  Google Scholar 

  42. J.M. Gracia-Bondia, Notes on Quantum Gravity and Noncommutative Geometry: New Paths Towards Quantum Gravity (Springer, Berlin, Heidelberg, 2010). https://doi.org/10.1007/978-3-642-11897-5_1

    Book  MATH  Google Scholar 

  43. D.M. Gingrich, Noncommutative geometry inspired black holes in higher dimensions at the LHC. J. High Energy Phys. 2010, 22 (2010). https://doi.org/10.1007/jhep05(2010)022

    Article  MathSciNet  MATH  Google Scholar 

  44. P. Martinetti. Beyond the standard model with noncommutative geometry, strolling towards quantum gravity. vol. 634, p. 012001. IOP Publishing, (2015). https://doi.org/10.1088/1742-6596/634/1/012001

  45. I. Haouam, Dirac oscillator in dynamical noncommutative space. Acta. Polytech. 61(6), 689 (2021). https://doi.org/10.14311/AP.2021.61.0689

    Article  Google Scholar 

  46. I. Haouam, Analytical solution of (2+1) dimensional Dirac equation in time-dependent noncommutative phase-space. Acta. Polytech. 60(2), 111 (2020). https://doi.org/10.14311/AP.2020.60.0111

    Article  Google Scholar 

  47. Andreas Fring et al., Strings from position-dependent noncommutativity. J. Phys. A: Math. Theor. 43, 345401 (2010). https://doi.org/10.1088/1751-8113/43/34/345401

    Article  MathSciNet  MATH  Google Scholar 

  48. I. Haouam, Two-dimensional Pauli equation in noncommutative phase-space. Ukr. J. Phys. 66(9), 771 (2021). https://doi.org/10.15407/ujpe66.9.771

    Article  Google Scholar 

  49. L.N. Chang, D. Minic, N. Okamura, T. Takeuchi, Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations. Phys. Rev. D (2002). https://doi.org/10.1103/PhysRevD.65.125027

    Article  MathSciNet  Google Scholar 

  50. K. Nouicer, Pauli-Hamiltonian in the presence of minimal lengths. J. Math. Phys. (2006). https://doi.org/10.1063/1.2393151

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Zarei, B. Mirza, Minimal uncertainty in momentum: the effects of IR gravity on quantum mechanics. Phys. Rev. D (2009). https://doi.org/10.1103/PhysRevD.79.125007

    Article  Google Scholar 

  52. F. Brau, F. Buisseret, Minimal length uncertainty relation and gravitational quantum well. Phys. Rev. D 74(3), 036002 (2006). https://doi.org/10.1103/PhysRevD.74.036002

    Article  ADS  Google Scholar 

  53. O. Nairz, M. Arndt, A. Zeilinger, Experimental verification of the Heisenberg uncertainty principle for fullerene molecules. Phys. Rev. A (2002). https://doi.org/10.1103/PhysRevA.65.032109

    Article  Google Scholar 

  54. M.M. Stetsko, Corrections to the ns levels of the hydrogen atom in deformed space with minimal length. Phys. Rev. A. (2006). https://doi.org/10.1103/PhysRevA.74.062105

    Article  Google Scholar 

  55. S. Das, E.C. Vagenas, Universality of quantum gravity corrections. Phys. Rev. Lett. (2008). https://doi.org/10.1103/PhysRevLett.101.221301

    Article  Google Scholar 

  56. A. Kempf, Quantum groups and quantum field theory with nonzero minimal uncertainties in positions and momenta. Czechoslov. J. Phys. 44, 1041 (1994). https://doi.org/10.1007/BF01690456

    Article  ADS  MathSciNet  Google Scholar 

  57. A. Kempf, On quantum field theory with nonzero minimal uncertainties in positions and momenta. J. Math. Phys. 38, 1347 (1997). https://doi.org/10.1063/1.531814

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. B. Hamil, M. Merad, Dirac equation in the presence of minimal uncertainty in momentum. Few-Body Syst. 60, 36 (2019). https://doi.org/10.1007/s00601-019-1505-0

    Article  ADS  Google Scholar 

  59. W.S. Chung, H. Hassanabadi, A new higher order GUP: one dimensional quantum system. Eur. Phys. J. C 79, 213 (2019). https://doi.org/10.1140/epjc/s10052-019-6718-3

    Article  ADS  Google Scholar 

  60. K. Nouicer, Quantum-corrected black hole thermodynamics to all orders in the Planck length. Phys. Lett. B 646, 63 (2007). https://doi.org/10.1016/j.physletb.2006.12.072

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. K. Nouicer, Black hole thermodynamics to all orders in the Planck length in extra dimensions. Class. Quantum Grav. 24, 6435 (2007). https://doi.org/10.1088/0264-9381/24/24/C02

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. B. Hamil, B.C. Lütfüoğlu, New higher-order generalized uncertainty principle: applications. Int. J. Theor. Phys. 60, 2790–2803 (2021). https://doi.org/10.1007/s10773-021-04853-6

    Article  MathSciNet  MATH  Google Scholar 

  63. B. Hamil, B.C. Lütfüoğlu, GUP to all orders in the Planck length: some applications. Int. J. Theor. Phys. 61, 202 (2022). https://doi.org/10.1007/s10773-022-05188-6

    Article  MathSciNet  MATH  Google Scholar 

  64. I. Haouam, L. Chetouani, The Foldy-Wouthuysen transformation of the Dirac equation in noncommutative phase-space. J. Mod. Phys. 9, 2021 (2018). https://doi.org/10.4236/jmp.2018.911127

    Article  Google Scholar 

  65. I. Haouam, The non-relativistic limit of the DKP equation in non-commutative phase-space. Symmetry 11, 223 (2019). https://doi.org/10.3390/sym11020223

    Article  ADS  MATH  Google Scholar 

  66. I. Haouam, The phase-space noncommutativity effect on the large and small wave-function components approach at Dirac Equation. Open Access Lib. J. (2018). https://doi.org/10.4236/oalib.1104108

    Article  Google Scholar 

  67. L.M. Lawson, Minimal and maximal lengths from position-dependent non-commutativity. J. Physi. A: Math. Theor. (2020). https://doi.org/10.1088/1751-8121/ab7497

    Article  MATH  Google Scholar 

  68. H. Hassanabadi, Z. Molaee, S. Zarrinkamar, Noncommutative phase space Schrödinger equation with minimal length. Adv. High Energy Phys. (2014). https://doi.org/10.1155/2014/459345

    Article  MATH  Google Scholar 

  69. F.A. Dossa, J.T. Koumagnon, J.V. Hounguevou, G.Y.H. Avossevou, Non-commutative phase space Landau problem in the presence of a minimal length. Vestnik KRAUNC. Fiz.-mat. nauki.33(4), 188 (2020). https://doi.org/10.26117/2079-6641-2020-33-4-188-198

  70. A. Boumali, H. Hassanabadi, Exact solutions of the (2+1)-dimensional Dirac oscillator under a magnetic field in the presence of a minimal length in the non-commutative phase space. Z. Naturforschung A. 70(8), 619 (2015). https://doi.org/10.1515/zna-2015-0140

    Article  ADS  Google Scholar 

  71. I. Haouam, On the three-dimensional Pauli equation in noncommutative phase-space. Acta Polytech. 61(1), 230 (2021). https://doi.org/10.14311/AP.2021.61.0230

    Article  Google Scholar 

  72. I. Haouam, Continuity equation in presence of a non-local potential in non-commutative phase-space. Open J. Microphys. 9(3), 15 (2019). https://doi.org/10.4236/ojm.2019.93003

    Article  ADS  MATH  Google Scholar 

  73. A.J. Silenko, Foldy-Wouthyusen transformation and semiclassical limit for relativistic particles in strong external fields. Phys. Rev. A (2008). https://doi.org/10.1103/physreva.77.012116

    Article  Google Scholar 

  74. A.J. Silenko, Exact form of the exponential Foldy-Wouthuysen transformation operator for an arbitrary-spin particle. Phys. Rev. A (2016). https://doi.org/10.1103/physreva.94.032104

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Haouam.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haouam, I. Foldy–Wouthuysen Transformation of Noncommutative Dirac Equation in the Presence of Minimal Uncertainty in Momentum. Few-Body Syst 64, 9 (2023). https://doi.org/10.1007/s00601-023-01790-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01790-4

Navigation