Skip to main content
Log in

Nonrelativistic Heavy Quarkonium Model Descended from a Quasi-Particle Approach

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

A Schrödinger-type equation for a heavy quarkonium in terms of the dynamical quark mass is obtained in a quasi-particle approach by Llanes-Estrada and Cotanch. To observe the relationship between the obtained equation and the constituent quark (potential) model equation, we treat the dynamical quark mass by a constant parameter M and expand the equation in 1/M up to order (1/M). The equation reduces to that of the traditional nonrelativistic constituent quark model when a nonlocal interaction is neglected. We investigate the nonrelativistic model where the dynamical quark mass M in the Schrödinger-type equation is treated as a free parameter and call it the quasi-quark (QQ) model. To elucidate the role of the nonlocal interaction and to observe the reliability of the QQ model, we studied the charmonium S-wave states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For example, cf. Text book by Ynduráin [1].

  2. To control the infrared divergence of \(\hat{v}(|k|)\), the limit \(\mu \rightarrow 0\) was taken after the integration was performed.

  3. The integral term in Eq. (3.10) has a well-defined value in the singular integral sense, despite the logarithmic divergence on the straight line \(x=r\).

  4. As another possible example of a physical quantity related to the wave function of the heavy quarkonium, a picture for the open flavor decays has been proposed [19].

References

  1. F.J. Ynduráin, p201 in Quantum Chromodynamics An Introduction to the Theory of Quarks and Gluons. (Springer, Verlag, 1983)

    Book  Google Scholar 

  2. F.J. Llanes-Estrada, S.R. Cotanch, Phys. Rev. Lett. 84, 1102 (2000)

    Article  ADS  Google Scholar 

  3. F.J. Llanes-Estrada, S.R. Cotanch, Nucl. Phys. A 697, 303 (2002)

    Article  ADS  Google Scholar 

  4. F.J. Llanes-Estrada, S.R. Cotanch, Phys. Lett. B 504, 15 (2001)

    Article  ADS  Google Scholar 

  5. S.R. Cotanch, Fizika B 13, 27 (2004)

    ADS  Google Scholar 

  6. F.J. Llanes-Estrada, S.R. Cotanch, A.P. Szczepaniak, E.S. Swanson, Phys. Rev. C 70, 035202 (2004)

    Article  ADS  Google Scholar 

  7. A. Amer, A.. Le. Yaouanc, L. Oliver, O. Pène, J.-C. Raynal, Phys. Rev. Lett. 50, 87 (1983)

    Article  ADS  Google Scholar 

  8. A.. Le. Yaouanc, L. Oliver, O. Pène, J.-C. Raynal, Phys. Rev. D 29, 1233 (1984)

    Article  ADS  Google Scholar 

  9. A.. Le. Yaouanc, L. Oliver, S. Ono, O. Pène, J.-C. Raynal, Phys. Rev. D 31, 137 (1985)

    Article  ADS  Google Scholar 

  10. S.L. Adler, A.C. Davis, Nucl. Phys. B 244, 469 (1984)

    Article  ADS  Google Scholar 

  11. M. Hirata, Prog. Theor. Phys. 77, 939 (1987)

    Article  ADS  Google Scholar 

  12. J.G. Valatin, Nuovo Cim. 7, 843 (1958)

    Article  ADS  Google Scholar 

  13. N.N. Bogoliubov, Nuovo Cim. 7, 794 (1958)

    Article  ADS  Google Scholar 

  14. J.G. Valatin, Nuovo Cim. 7, 843 (1958)

    Article  ADS  Google Scholar 

  15. E. Hiyama, Y. Kino, M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003)

    Article  ADS  Google Scholar 

  16. G.S. Bali, Phys. Rep. 343, 1 (2001)

    Article  ADS  Google Scholar 

  17. T. Kawanai, S. Sasaki, Phys. Rev. Lett. 107, 091601 (2011)

    Article  ADS  Google Scholar 

  18. P.A. Zyla et al., Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

    Article  Google Scholar 

  19. J.M. Torres-Rincon, F.J. Llanes-Estrada, Phys. Rev. Lett. 105, 022003 (2010)

    Article  ADS  Google Scholar 

  20. L.I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1955), p.140

    Google Scholar 

  21. W. Lucha, F.F. Schöberl, D. Gromes, Phys. Rep. 200(4), 127 (1991)

    Article  ADS  Google Scholar 

  22. R. Barbieri, in Hadrons (Usual and Newly Discovered) in Gauge Theories; A Dream?. Weak and Electromagnetic Interactions at High Energies (Plenum Press, 1976)

  23. R. Barbieri, R. Kögerler, Z. Kunszt, R. Gatto, Nucl. Phys. B 105, 125 (1976)

    Article  ADS  Google Scholar 

  24. J. Bicudo Pedro, A. de Ribeiro, E.F.T. Josè, Phys. Rev. D 42, 1611 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Katō.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakai, M., Hirano, M., Katō, K. et al. Nonrelativistic Heavy Quarkonium Model Descended from a Quasi-Particle Approach. Few-Body Syst 64, 2 (2023). https://doi.org/10.1007/s00601-022-01782-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-022-01782-w

Navigation