Skip to main content

Advertisement

Log in

Electronic Structures and Spectra Properties of Plasma-Embedded Atoms or Ions Under the External Electric-Field

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

A method within the relativistic computational scheme is developed and used to investigate the electronic structures and spectra properties of plasma-embedded atoms/ions placed in an external electric-field by using the configuration interaction approximation, which is proved to be a powerful tool to include both the electron correlation and relativistic effect. In this scheme, the screening potential based on the self-consistent-field ion-sphere model is used to explain the effect of the plasma environment and the weak electric-field is considered as the external perturbation. As a first application, plasma-embedded He\(^{+}\) ion is considered as an illustrative case. The influences of the different plasma temperature and density parameters and the external electric field strengths on the energy eigenvalues and transition properties are investigated in detail. Our results indicate that, inclusion of the screening effects destabilizes the atomic system (decreases energy eigenvalues and transition properties), whereas inclusion of the external electric field counteracts these effects by lowering the energies of the embedded case, thereby improving the stability of atomic system. Overall, compared to the electric field effect on the electronic structures and spectra properties of a guest ion, an obvious deflection takes place for the plasma screening, which implies that the latter has stronger effects. The present results are consistent with the results of the other available theoretical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Salzman, Atomic Physics in Hot Plasmas, 1st edn. (Oxford University Press, Oxford, 1998)

    Google Scholar 

  2. T. Kawachi, Phys. Rev. E 67, 016409 (2003)

    Article  ADS  Google Scholar 

  3. S.H. Glenzer, C.A. Back, K.G. Estabrook, B.J. MacGowan, D.S. Montgomery, R.K. Kirkwood, J.D. Moody, D.H. Munro, G.F. Stone, Phys. Rev. E 55, 927 (1997)

    Article  ADS  Google Scholar 

  4. F.B. Rosmej, Phys. Rev. E 58, R32(R) (1998)

    Article  ADS  Google Scholar 

  5. R.K. Janev, S.B. Zhang, J.G. Wang, Matter Radiat. Extremes 1, 237 (2016)

    Article  Google Scholar 

  6. Z.B. Chen, Y.Y. Qi, H.Y. Sun, G.P. Zhao, P.F. Liu, Phys. Plasmas 28, 052109 (2021)

    Article  ADS  Google Scholar 

  7. F.B. Rosmej, K. Bennadji, V.S. Lisitsa, Phys. Rev. A 84, 032512 (2011)

    Article  ADS  Google Scholar 

  8. Z.-B. Chen, P.-F. Liu, H.-Y. Sun, Y.-Y. Qi, G.-P. Zhao, X.-Z. Shen, L.-G. Jiao, K. Ma, K. Wang, X.-D. Li, Int. J. Quantum Chem. , e26842 (2021). https://doi.org/10.1002/qua.26842

  9. B. Saha, S. Fritzsche, Phys. Rev. E 73, 036405 (2006)

    Article  ADS  Google Scholar 

  10. M.K. Bahar, Phys. Plasmas 21, 072706 (2014)

    Article  ADS  Google Scholar 

  11. A. Poszwa, M.K. Bahar, Phys. Plasmas 22, 012104 (2015)

    Article  ADS  Google Scholar 

  12. N. Mukherjee, C.N. Patra, A.K. Roy, Phys. Rev. A 104, 012803 (2021)

    Article  ADS  Google Scholar 

  13. A. Poszwa, M.K. Bahar, A. Soylu, Phys. Plasmas 23, 103515 (2016)

    Article  ADS  Google Scholar 

  14. H.H. Xie, L.G. Jiao, A.H. Liu, Y.K. Ho, Int. J. Quantum Chem. 121, e26653 (2021)

    Article  Google Scholar 

  15. S.K. Nayek, S. Mondal, J.K. Saha, Atom. Data. Nucl. Data 137, 101379 (2021)

    Article  Google Scholar 

  16. X. Wang, Z. S Jiang, S. Kar, and Y. K. Ho, Atom. Data. Nucl. Data https://doi.org/10.1016/j.adt.2021.101466

  17. J.L. Zeng, Y.J. Li, J.M. Yuan, J. Quantum. Spectrosc. Radiat. Transf. 272, 107777 (2021)

    Article  Google Scholar 

  18. F.Y. Zhou, Y.Z. Qu, J.W. Gao, Y.L. Ma, Y. Wu, J.W. Wang, Commun. Phys. 4, 148 (2021)

    Article  Google Scholar 

  19. R. Jin, M.M. Abdullah, Z. Jurek, R. Santra, S.-K. Son, Phys. Rev. E 103, 023203 (2021)

    Article  ADS  Google Scholar 

  20. M.F. Gu, P. Beiersdorfer, Phys. Rev. A 101, 032501 (2020)

    Article  ADS  Google Scholar 

  21. M. Das, B.K. Sahoo, S. Pal, Phys. Rev. A 93, 052513 (2016)

    Article  ADS  Google Scholar 

  22. F.B. Rosmej, J. Phys. B 51, 09LT01 (2018)

    Article  Google Scholar 

  23. X. Li, Z. Xu, F.B. Rosmej, J. Phys. B 39, 3373 (2006)

    Article  ADS  Google Scholar 

  24. F.B. Rosmej, V.A. Astapenko, V.S. Lisitsa, Phys. Rev. A 90, 043421 (2014)

    Article  ADS  Google Scholar 

  25. F.B. Rosmej, B. Deschaud, K. Bennadji, P. Indelicato, J.P. Marques, Phys. Rev. A 87, 022515 (2013)

    Article  ADS  Google Scholar 

  26. D.M. Mitnik, M.S. Pindzola, D.C. Griffin, Phys. Rev. A 62, 062711 (2000)

    Article  ADS  Google Scholar 

  27. X. Li, F.B. Rosmej, Phys. Lett. A 384, 126478 (2020)

    Article  Google Scholar 

  28. X. Li, F.B. Rosmej, V.S. Lisitsa, V.A. Astapenko, Phys. Plasmas 26, 033301 (2019)

    Article  ADS  Google Scholar 

  29. K.T. Chung, T.K. Fang, Y.K. Ho, J. Phys. B 34, 165 (2011)

    Article  ADS  Google Scholar 

  30. T.K. Fang, Y.K. Ho, Phys. Rev. A 60, 2145 (1999)

    Article  ADS  Google Scholar 

  31. C.Y. Lin, Y.K. Ho, J. Phys. B 44, 175001 (2011)

    Article  ADS  Google Scholar 

  32. L. Liu, J. Rana, S. Liao, Phys. Rev. E 103, 023206 (2021)

    Article  ADS  Google Scholar 

  33. X.-W. Wang, S.-W. Chen, J.-Y. Guo, J. Phys. B 52, 025001 (2019)

    Article  ADS  Google Scholar 

  34. M.F. Gu, Can. J. Phys. 86, 675 (2008)

    Article  ADS  Google Scholar 

  35. S. Paul, Y.K. Ho, Phys. Plasmas 17, 082704 (2010)

    Article  ADS  Google Scholar 

  36. A.C.H. Yu, Y.K. Ho, Phys. Plasmas 12, 043302 (2005)

    Article  ADS  Google Scholar 

  37. A. Singh, D. Dawra, M. Dimri, A. Jha, R. Pandey, M. Mohan, Phys. Lett. A 384, 126369 (2020)

    Article  Google Scholar 

  38. S. Li, J. Yan, C.Y. Li, R. Si, X.L. Guo, M. Huang, C.Y. Chen, Y.M. Zou, Astron. Astrophys. 583, A82 (2015)

    Article  ADS  Google Scholar 

  39. K.M. Aggarwal, F.P. Keenan, Phys. Scr. 82, 065302 (2010)

    Article  ADS  Google Scholar 

  40. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team (2021). NIST Atomic Spectra Database (ver. 5.9), [Online]. Available: https://physics.nist.gov/asd [2021, November 1]. National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/10.18434/T4W30F

  41. L. Vysin, T. Wang, B. Wu, U. Zastrau, D. Zhu, R.W. Lee, P. Heimann, B. Nagler, J.S. Wark, Phys. Rev. Lett. 109, 065002 (2012)

    Article  ADS  Google Scholar 

  42. S. Bhattacharyya, J.K. Saha, T.K. Mukherjee, Phys. Rev. A 91, 042515 (2015)

    Article  ADS  Google Scholar 

  43. C.A. Iglesias, High. Energy Dens. Phys. 30, 41–44 (2019)

    Article  ADS  Google Scholar 

  44. M. Belkhiri, C.J. Fontes, M. Poirier, Phys. Rev. A 92, 032501 (2015)

    Article  ADS  Google Scholar 

  45. W.L. Wiese, J.R. Fuhr, J. Phys. Chem. Ref. Data 38, 565–726 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author sincerely acknowledges the support received from the Natural Science Foundation of Henan Province (Grant No. 202300410275) and the Natural Science Foundation of Hunan Province (Grant No. 2021JJ40167).

Author information

Authors and Affiliations

Authors

Ethics declarations

Author’s Contribution

YS Tian Calculation, Data curation, and Writing of some sections; ZBC Code, Conceptualization, Formal analysis, Writing, Review and Editing.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y.S., Chen, Z.B. Electronic Structures and Spectra Properties of Plasma-Embedded Atoms or Ions Under the External Electric-Field. Few-Body Syst 63, 19 (2022). https://doi.org/10.1007/s00601-021-01724-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01724-y

Navigation