Skip to main content
Log in

Results for Particular Cases of \(\varvec{\upsilon =1/2}\) States of \({\varvec{FQHE}}\) in Disk Geometry

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this article, we report on analytic studies in the particular case \(\upsilon \) =1/2 of the fractional quantum Hall effect(FQHE). We studied the properties of a 2D electronic gas subjected to a strong magnetic field and cooled at a low temperature. According to composite fermions (CF) theory for a stable system, particular values of the filling of the electronic states lead to more stable ground states with smaller energy. For strongly correlated system, is it possible to see the CF at 1/2. The results that we obtained by analytical calculations, where the representation for certain integrals of products of Meijer G-functions is obtained. We considering two special wave functions of the form of: (a) Bose-Laughlin wave function in Ref. [22] for half-filling and (b) Slater determinant functions in Ref. [23](International Journal of Modern Physics B Vol. 24, No. 18 (2010) 3489-3499), and we extend this results for systems with up to N=10 electrons. We note that none of these two wave functions is related to the real Fermi wave function at filling 1/2 which is the Rezayi-Read wave function in Eq.(2). We compare our analytical results with the method of Monte Carlo of Jain [8], Park [21] as well as of Ciftja [22,23,24] for some electrons and concluded that the different values of energy in good agreement with each other. In the thermodynamic limit, the ground state energy per particle is obtained by an extrapolation of the three energies, the energy of the interaction between electron–electron(e–e), electron-background(e–b), and background-background(b–b).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.C. Tsui, H.L. Stormer, A.C. Gossard, Phys. Rev. Lett. 48, 559 (1982)

    ADS  Google Scholar 

  2. V.J. Goldman, M. Shayegan, D.C. Tsui, Phys. Rev. Lett. 61, 881 (1988)

    Article  ADS  Google Scholar 

  3. R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)

    Article  ADS  Google Scholar 

  4. J.K. Jain, Phys. Rev. Lett. 63, 199 (1989)

    Article  ADS  Google Scholar 

  5. R. Morf, B.I. Halperin, Phys. Rev. Lett. 33, 2221 (1986)

    ADS  Google Scholar 

  6. G. Fano, F. Ortolani, Phys. Rev. Lett. 37, 8179 (1986)

    Google Scholar 

  7. R.K. Kamilla, J.K. Jain, S.M. Girvin, Phys. Rev. B. 56, 12411 (1997)

    Article  ADS  Google Scholar 

  8. J.K. Jain, Composite Fermions, Cambridge, (2007)

  9. E.P. Wigner, Phys. Rev. Lett. 46, 1002 (1934)

    ADS  Google Scholar 

  10. E. Rezayi, N. Read, Phys. Rev. Lett. 72, 900 (1994)

    Article  ADS  Google Scholar 

  11. M.A. Ammar, Z. Bentalha, S. Bekhechi, Condens. Matter. Phys. 19, 33702 (2019)

    Article  Google Scholar 

  12. O. Ciftja, physica. B. 404, 036 (2009)

    Article  Google Scholar 

  13. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals Series and Products (Academic Press, New York, 1980)

    MATH  Google Scholar 

  14. M. Ahmed Ammar, Méthodes Analytique et Numérique dans l’Effet Hall Quantique Fractionnaire et Rôle du Spin des Èlectrons, Algeria, (2018)

  15. M.A. Ammar, Condens. Matter. Phys. 22, 23701 (2019)

    Article  Google Scholar 

  16. B.I. Halperin, Helv. Phys. Acta 56, 75 (1983)

    Google Scholar 

  17. J.K. Jain, R.K. Kamilla, Phys. Rev. B 55, 4895 (1997)

    Article  ADS  Google Scholar 

  18. B.I. Halperin, P.A. Lee, N. Read, Phys. Rev. B. 47, 7312 (1993)

    Article  ADS  Google Scholar 

  19. O. Ciftja, S. Fantoni, Phys. Rev. B. 58, 7898 (1998)

    Article  ADS  Google Scholar 

  20. O. Ciftja, Eur. Phys. J. B. 13, 671 (2000)

    Article  ADS  Google Scholar 

  21. K. Park, V. Melik-Alaverdian, N.E. Bonesteel, J.K. Jain, Phys. Rev. 58, 10167 (1998)

    Article  Google Scholar 

  22. O. Ciftja, Ann. Phys. 421, 168279 (2020)

    Article  MathSciNet  Google Scholar 

  23. O. Ciftja, Int. J. Mod. Phys. B. 24, 3489 (2010)

    Article  ADS  Google Scholar 

  24. O. Ciftja, Europhys. Lett. 74, 486 (2006)

    Article  ADS  Google Scholar 

  25. R. Morf, N. Ambrumenil, Phys. Rev. Lett. 74, 5116 (1995)

    Article  ADS  Google Scholar 

  26. O. Ciftja, C. Wexler, Phys. Rev. 67, 075304 (2003)

    Article  Google Scholar 

  27. Wolfram Research, Inc., Mathematica, Version 4.0 Champaign, Illinois, (1999)

  28. F.D.M. Haldane, E.H. Rezayi, Phys. Rev. Lett. 60, 956 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Theoretical Laboratory “Laboratoire de Physique des Techniques Experimentales et ses Applications(LPTEA)”, University of Medea, Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ahmed Ammar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammar, M.A. Results for Particular Cases of \(\varvec{\upsilon =1/2}\) States of \({\varvec{FQHE}}\) in Disk Geometry. Few-Body Syst 63, 5 (2022). https://doi.org/10.1007/s00601-021-01711-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01711-3

Navigation