Skip to main content

Advertisement

Log in

On the \(\hbox {K}^{-}\) Absorptions in Light Nuclei by AMADEUS

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The aim of the AMADEUS collaboration is to provide experimental information on the low-energy strong interaction of antikaons with nucleons, exploiting the absorptions of low momentum \(\hbox {K}^{-}\) mesons (\(p_\mathrm {K} \sim \) 127 MeV/c) produced at the \(\hbox {DA}\mathrm {\Phi }\hbox {NE}\) collider, in the materials composing the KLOE detector setup, used as an active target. The \(\hbox {K}^{-}\) single and multi-nucleon absorptions in light nuclei (\(^4\hbox {He}\) and \(^{12}\hbox {C}\)) are investigated by reconstructing hyperon–pion, hyperon–nucleon/nucleus pairs, emitted in the final state of the reactions. In this paper the results obtained from the study of \(\mathrm {\Lambda }\pi ^{-}\), \(\mathrm {\Lambda }\hbox {p}\) and \(\mathrm {\Lambda }\hbox {t}\) correlated production are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. C. Curceanu et al., AMADEUS. Acta Phys. Polon. B 46(1), 203–215 (2015)

    Article  ADS  Google Scholar 

  2. A. Gallo et al., Conf. Proc. C060626, 604 (2006)

    ADS  Google Scholar 

  3. F. Bossi et al., Riv. Nuovo Cim. 31, 531 (2008)

    ADS  Google Scholar 

  4. G. Agakishiev et al., HADES. Phys. Rev. C 87, 025201 (2013)

    Article  ADS  Google Scholar 

  5. J.C. Nacher, E. Oset, H. Toki, A. Ramos, Phys. Lett. B 455, 55–61 (1999)

    Article  ADS  Google Scholar 

  6. L. Tolos, L. Fabbietti, Prog. Part. Nucl. Phys. 112, 103770 (2020)

    Article  Google Scholar 

  7. J. Adamczewski-Musch et al., HADES. Phys. Rev. Lett. 123(2), 022002 (2012)

    Article  ADS  Google Scholar 

  8. M. Agnello et al., Phys. Rev. Lett. 94, 212303 (2005)

    Article  ADS  Google Scholar 

  9. G. Bendiscioli, A. Fontana, L. Lavezzi, A. Panzarasa, A. Rotondi, T. Bressani, Nucl. Phys. A 789, 222–242 (2007)

    Article  ADS  Google Scholar 

  10. T. Suzuki et al., KEK-PS E549. Mod. Phys. Lett. A 23, 2520–2523 (2008)

    Article  ADS  Google Scholar 

  11. T. Yamazaki et al., Phys. Rev. Lett. 104, 132502 (2010)

    Article  ADS  Google Scholar 

  12. A.O. Tokiyasu et al., LEPS. Phys. Lett. B 728, 616–621 (2014)

    Article  ADS  Google Scholar 

  13. G. Agakishiev et al., HADES. Phys. Lett. B 742, 242–248 (2015)

    Article  ADS  Google Scholar 

  14. Y. Ichikawa et al., PTEP 2015(2), 021D01 (2015)

    Google Scholar 

  15. O. Vazques Doce, L. Fabbietti et al., Phys. Lett. B 758, 134 (2016)

    Article  ADS  Google Scholar 

  16. Y. Sada et al., J-PARC E15. PTEP 2016(5), 051D01 (2016)

    Google Scholar 

  17. R. Münzer, L. Fabbietti, E. Epple, S. Lu, P. Klose et al., Phys. Lett. B 785, 574–580 (2018)

    Article  ADS  Google Scholar 

  18. S. Ajimura et al., J-PARC E15. Phys. Lett. B 789, 620–625 (2019)

    Article  ADS  Google Scholar 

  19. Y. Akaishi, T. Yamazaki, Phys. Rev. C 65, 044005 (2002)

    Article  ADS  Google Scholar 

  20. L.R. Staronski, S. Wycech, J. Phys. G Nucl. Phys. 13(11), 1361 (1987)

    Article  ADS  Google Scholar 

  21. J.A. Oller, U.G. Meissner, Phys. Lett. B 500, 263–272 (2001)

    Article  ADS  Google Scholar 

  22. D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 725, 181–200 (2003)

    Article  ADS  Google Scholar 

  23. A. Feijoo, V. Magas, A. Ramos, Phys. Rev. C 99(3), 035211 (2019)

    Article  ADS  Google Scholar 

  24. Y. Ikeda, T. Hyodo, W. Weise, Nucl. Phys. A 881, 98 (2012)

    Article  ADS  Google Scholar 

  25. A. Cieplý, J. Smejkal, Nucl. Phys. A 881, 115 (2012)

    Article  ADS  Google Scholar 

  26. Z.H. Guo, J.A. Oller, Phys. Rev. C 87, 035202 (2013)

    Article  ADS  Google Scholar 

  27. M. Mai, U.G. Meißner, Eur. Phys. J. A 51, 30 (2015)

    Article  ADS  Google Scholar 

  28. S. Acharya et al., ALICE. Phys. Rev. Lett. 124(9), 092301 (2020)

    Article  ADS  Google Scholar 

  29. K. Piscicchia, S. Wycech, L. Fabbietti et al., Phys. Lett. B 782, 339 (2018)

    Article  ADS  Google Scholar 

  30. E. Friedman, A. Gal, Nucl. Phys. A 959, 66–82 (2017)

    Article  ADS  Google Scholar 

  31. J. Hrtánková, J. Mareš, Phys. Rev. C 96, 015205 (2017)

    Article  ADS  Google Scholar 

  32. T. Sekihara, D. Jido, Y. Kanada-En’yo, Phys. Rev. C 79, 062201 (2009)

    Article  ADS  Google Scholar 

  33. J. Hrtánková, A. Ramos, Phys. Rev. C 101(3), 035204 (2020)

    Article  ADS  Google Scholar 

  34. R. Del Grande, K. Piscicchia, O. Vazquez Doce et al., Eur. Phys. J. C 79(3), 190 (2019)

    Article  ADS  Google Scholar 

  35. M. Agnello, FINUDA. Phys. Rev. C 92(4), 92 (2015)

    Google Scholar 

  36. K. Piscicchia et al., EPJ Web Conf. 137, 09005 (2017)

    Article  Google Scholar 

  37. M. Adinolfi et al., Nucl. Instrum. Methods A 488, 51–73 (2002)

    Article  ADS  Google Scholar 

  38. M. Adinolfi et al., Nucl. Instrum. Methods A 482, 364–386 (2002)

    Article  ADS  Google Scholar 

  39. F. Ambrosino et al., Nucl. Instrum. Methods A 534, 403–433 (2004)

    Article  ADS  Google Scholar 

  40. M. Tanabashi et al., Particle data group. Phys. Rev. D 98, 030001 (2018)

    Article  ADS  Google Scholar 

  41. K. Piscicchia, S. Wycech, C. Curceanu, Nucl. Phys. A 954, 75 (2016)

    Article  ADS  Google Scholar 

  42. R. Del Grande, K. Piscicchia, S. Wycech, Acta Phys. Pol. B 48, 1881 (2017)

    Article  ADS  Google Scholar 

  43. P.A. Katz et al., Phys. Rev. D 1(5), 1267 (1970)

    Article  ADS  Google Scholar 

  44. C. Vander Velde-Wilquet, II Nuovo Cimento A (1965–1970) 39, 538 (1977)

    Article  ADS  Google Scholar 

  45. R. Del Grande, K. Piscicchia et al., Phys. Scripta 95(8), 084012 (2020)

    Article  ADS  Google Scholar 

  46. R. Roosen, J.H. Wickens, II Nuovo Cimento A Ser. 11 66(1), 101 (1981)

    Article  Google Scholar 

  47. M. Agnello et al., Phys. Lett. B 669, 229 (2008)

    Article  ADS  Google Scholar 

  48. T. Sekihara, E. Oset, A. Ramos, PTEP 2016(12), 123D03 (2016)

    Google Scholar 

  49. T. Sekihara, E. Oset, A. Ramos, J.P.S. Conf. Proc. 26, 023009 (2019)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the KLOE/KLOE-2 Collaboration for their support and for having provided us with the data and the tools to perform the analysis presented in this paper. Part of this work was supported by Minstero degli Affari Esteri e della Cooperazione Internazionale, Direzione Generale per la Promozione del Sistema Paese (MAECI), Strange Matter project PRG00892; EU STRONG-2020 project (Grant Agreement No. 824093); Polish National Science Center through Grant No. UMO-2016/21/D/ST2/01155.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Piscicchia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Grande, R., Piscicchia, K., Cargnelli, M. et al. On the \(\hbox {K}^{-}\) Absorptions in Light Nuclei by AMADEUS. Few-Body Syst 62, 7 (2021). https://doi.org/10.1007/s00601-020-01589-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-020-01589-7

Navigation