Skip to main content
Log in

Variational Calculations for a Two-Electron Quantum Dot Interacting with a Magnetic Field

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The behavior of the two-electron quantum dot interacting with a uniform magnetic field is not fully understood yet. This lack of clarity arises from the fact that the mixed, spherical and cylindrical, coordinates do not allow the system to be separable. In this paper, we applied an standard variational method, with a physical recipe for choosing compact trial functions. In order to solve the six dimensional integrals necessary to compute the expectation value of the Hamiltonian, we used a Monte Carlo routine. The energy values obtained are in agreement with the ones presented in previous literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Jaskólski, Confined many-electron systems. Phys. Rep. 271, 1 (1996)

    Article  ADS  Google Scholar 

  2. T. Sako, G.H.F. Diercksen, Confined quantum systems: spectral properties of the atoms helium and lithium in a power series potential. J. Phys. B At. Mol. Opt. Phys. 36, 1433 (2003)

    Article  ADS  Google Scholar 

  3. J. Birman, R. Nazmitdinov, V. Yukalov, Effects of symmetry breaking in finite quantum systems. Phys. Rep. 526, 1 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. O.-A. Al-Hujaj, P. Schmelcher, Lithium in strong magnetic fields. Phys. Rev. A 70, 033411 (2004)

    Article  ADS  Google Scholar 

  5. M. Hesse, D. Baye, Helium atoms in a strong magnetic field studied with the Lagrange-mesh method. J. Phys. B 37, 3937 (2004)

    Article  ADS  Google Scholar 

  6. S. Boblest, C. Schimeczek, G. Wunner, Ground states of helium to neon and their ions in strong magnetic fields. Phys. Rev. A 89, 012505 (2014)

    Article  ADS  Google Scholar 

  7. H. Qiao, B. Li, Calculations of lithium in magnetic fields with a modified freezing full-core method. Phys. Rev. A 62, 033401 (2000)

    Article  ADS  Google Scholar 

  8. X. Guan, B. Li, Energies and oscillator strengths of lithium in a strong magnetic field. Phys. Rev. A 63, 043413 (2001)

    Article  ADS  Google Scholar 

  9. V.G. Bezchastnov, P. Schmelcher, L.S. Cederbaum, Theory of magnetically induced anions. Phys. Rev. A 75, 052507 (2007)

    Article  ADS  Google Scholar 

  10. O.-A. Al-Hujaj, P. Schmelcher, Beryllium in strong magnetic fields. Phys. Rev. A 70, 023411 (2004)

    Article  ADS  Google Scholar 

  11. P.A. Maksym, T. Chakraborty, Quantum dots in a magnetic field: role of electron-electron interactions. Phys. Rev. Lett 65, 108 (1990)

    Article  ADS  Google Scholar 

  12. M. Wagner, U. Merkt, V. Chaplik, Spin-singlet–spin-triplet oscillations in quantum dots. Phys. Rev. B 45, 1951 (1992)

    Article  ADS  Google Scholar 

  13. N.R. Kestner, O. Sinanoglu, Study of Electron Correlation in Helium-Like Systems Using an Exactly Soluble Model. Phys. Rev. 128, 2687 (1962)

    Article  ADS  Google Scholar 

  14. M. Taut, A. Ernst, H. Eschrig, Two electrons in an external oscillator potential: exact solution versus one-particle approximations. J. Phys. B. 31(12), 2689 (1998)

    Article  ADS  Google Scholar 

  15. A. Poszwa, Two-electron spherical quantum dot in a magnetic field. Few Body Syst. 57, 1127 (2016)

    Article  ADS  Google Scholar 

  16. J.A. Salas, K. Varga, Hein a magnetic field: structure and stability. Phys. Rev. A 89, 052501 (2014)

    Article  ADS  Google Scholar 

  17. J.A. Salas, I. Pelaschier, K. Varga, Three-electron atoms and ions in a magnetic field. Phys. Rev. A 92, 033401 (2015)

    Article  ADS  Google Scholar 

  18. B.S. Kandemir, Variational study of two-electron quantum dots. Phys. Rev. B 72, 165350 (2005)

    Article  ADS  Google Scholar 

  19. A.V. Turbiner, The eigenvalue spectrum in quantum mechanics and the nonlinearization procedure. Usp. Fiz. Nauk 144, 35 (1984)

    Article  MathSciNet  Google Scholar 

  20. A.V. Turbiner, On eigenfunctions in quarkonium potential model (perturbation theory and variational method. Yad. Fiz. 46, 204 (1987)

    Google Scholar 

  21. A.V. Turbiner, J.C.L. Vieyra, One-electron molecular systems in a strong magnetic field. Phys. Rep. 424, 309 (2006)

    Article  ADS  Google Scholar 

  22. L.D. Landau, E.M. Lifshitz, Quantum Mechanics, 458 (Pergamon Press, Oxford, 1977)

    Google Scholar 

  23. W. Zhu, S.B. Trickey, Exact density functionals for two-electron systems in an external magnetic field. J. Chem. Phys. 125, 094317 (2006)

    Article  ADS  Google Scholar 

  24. M. Taut, Two-dimensional hydrogen in a magnetic field: analytical solutions. J. Phys. A. 28(7), 2081 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Nader.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nader, D.J., Alvarez-Jiménez, J. & Mejía-Díaz, H. Variational Calculations for a Two-Electron Quantum Dot Interacting with a Magnetic Field. Few-Body Syst 58, 116 (2017). https://doi.org/10.1007/s00601-017-1287-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-017-1287-1

Navigation