Skip to main content
Log in

Precise Measurements of DVCS at JLab and Quark Orbital Angular Momentum

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Deeply-virtual Compton scattering provides the cleanest access to the 3D imaging of the nucleon structure encoded in the generalized parton distributions, that correlate the fraction of the total nucleon momentum carried by a constituent to its position in the transverse plane. Besides the information on the spatial imaging of the nucleon, GPDs provide an access, through the Ji relation, to the contribution of the angular momentum of quarks to proton spin. An accurate estimate of such a contribution will lead to a better understanding of the origin of the proton spin. Jefferson Lab has been an ideal environment for the study of exclusive processes, thanks to the combination of the high-intensity and high-polarization electron beam provided by the CEBAF, with the complementary equipments of the three experimental halls. This has allowed high-precision measurements of the DVCS observables in a wide kinematic region, with focus on those observable s that provide access to the GPDs entering the Ji relation. These studies will be further widened by the projected data from the 12-GeV era, which will improve the existing measurements both in terms of precision and phase-space coverage. The important results on the proton DVCS obtained during the 6-GeV era will be discussed, together with the upcoming experiments approved for the 12-GeV upgrade, that foresees measurements with both proton and quasi-free neutron targets and that, when combined, will lead to the extraction of the Compton Form Factors for separate quark flavors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaffe, R.L.: Spin, twist and hadron structure in deep inelastic processes. Lect. Notes Phy. 496, 178 (1997)

    Article  ADS  Google Scholar 

  2. Müller, D., Robaschik, D., Geyer, B., Dittes, F.-M., Horejsi, J.: Wave functions, evolution equations and evolution kernels from light ray operators of QCD. Fortschr. Phys. 42, 101 (1994)

    Article  Google Scholar 

  3. Ji, X.: Gauge-invariant decomposition of nucleon spin. Phys. Rev. Lett. 78, 610 (1997)

    Article  ADS  Google Scholar 

  4. Ji, X.: Deeply virtual Compton scattering. Phys. Rev. D 55, 7114 (1997)

    Article  ADS  Google Scholar 

  5. Radyushkin, A.V.: Scaling limit of deeply virtual compton scattering. Phys. Lett. B 380, 417 (1996)

    Article  ADS  Google Scholar 

  6. Radyushkin, A.V.: Nonforward parton distributions. Phys. Rev. D 56, 5524 (1997)

    Article  ADS  Google Scholar 

  7. Collins, J.C., Frankfurt, L., Strikman, M.: Factorization for hard exclusive electroproduction of mesons in QCD. Phys. Rev. D 56, 2982 (1997)

    Article  ADS  Google Scholar 

  8. Goeke, K., Polyakov, M.V., Vanderhaeghen, M.: Hard exclusive reactions and the structure of hadrons. Prog. Part. Nucl. Phys. 47, 401 (2001)

    Article  ADS  Google Scholar 

  9. Diehl, M.: Generalized parton distributions. Phys. Rept. 388, 41 (2003)

    Google Scholar 

  10. Belitsky, A.V., Radyushkin, A.V.: Unraveling hadron structure with generalized parton distributions. Phys. Rept. 418, 1 (2005)

    Article  ADS  Google Scholar 

  11. Burkardt, Matthias: Impact parameter dependent parton distributions and offforward parton distributions for \(\zeta > 0\). Phys. Rev. D 62, 071503 (2000)

    Article  ADS  Google Scholar 

  12. Burkardt, Matthias: Impact parameter space interpretation for generalized parton distributions. Int. J. Mod. Phys. A 18, 173–208 (2003)

    Article  ADS  MATH  Google Scholar 

  13. Burkardt, Matthias: Generalized parton distributions for large x. Phys. Lett. B 595, 245–249 (2004)

    Article  ADS  Google Scholar 

  14. Ashman, J., et al.: (European Muon): A measurement of the spin asymmetry and determination of the structure function g1 in deep inelastic muon-proton scattering. Phys. Lett. B 206, 364 (1988)

    Article  ADS  Google Scholar 

  15. Ashman, J., et al.: (European Muon): An investigation of the spin structure of the proton in deep inelastic scattering of polarised muons on polarised protons. Nucl. Phys. B 328, 1 (1989)

    Article  ADS  Google Scholar 

  16. de Florian, et al.: Evidence for polarization of gluons in the proton. Phys. Rev. Lett. 113, 012001

  17. Stepanyan, S., et al.: (CLAS Collaboration): Observation of exclusive deeply virtual compton scattering in polarized electron beam asymmetry measurements. Phys. Rev. Lett. 87, 182002 (2001)

    Article  ADS  Google Scholar 

  18. Muñoz Camacho, C., et al.: (Hall-A Collaboration): Scaling tests of the cross section for deeply virtual compton scattering. Phys. Rev. Lett. 97, 262002 (2006)

    Article  ADS  Google Scholar 

  19. Defurne, M., et al.: (Hall-A Collaboration): E00110 experiment at Jefferson Lab hall a: deeply virtual Compton scattering off the proton at 6 GeV. Phys. Rev. C 92, 055202 (2015)

    Article  ADS  Google Scholar 

  20. Girod, F.-X., et al.: (CLAS Collaboration): Measurement of deeply virtual Compton scattering beam-spin asymmetries. Phys. Rev. Lett. 100, 162002 (2008)

    Article  ADS  Google Scholar 

  21. Burkert, V.D.: The JLab 12GeV upgrade and the initial science program. (2012). arXiv:1203.2373 [nucl-ex]

  22. Mecking, B.A., et al.: (CLAS Collaboration): Nucl. Inst. Meth. A 503, 513 (2003)

    Article  ADS  Google Scholar 

  23. CLAS12 Technical Design Report, version 5.1, 208 (2008). https://www.jlab.org/Hall-B/clas12_tdr

  24. Hall-A proposal: Measurements of the electron-helicity dependent cross sections of the DVCS with CEBAF at 12 GeV. E12-06-114

  25. Hall-C proposal: Exclusive deeply virtual compton and neutral pion cross-section measurements in Hall C. PR12-13-010

  26. Jo, H.S., et al. (CLAS Collaboration): Cross sections for the exclusive photon electroproduction on the proton and generalized Parton distributions. Phys. Rev. Lett. 115 (2015) 21, 212003. arXiv:1504.02009 [hep-ex]

  27. Pisano, S., et al. (CLAS Collaboration): Single and double spin asymmetries for deeply virtual Compton scattering measured with CLAS and a longitudinally polarized proton target. Phys. Rev. D 91, 052014 (2015). arXiv:1501.07052 [hep-ex]

  28. Seder, E., et al. (CLAS Collaboration): Longitudinal targetspinasymmetries for deeply virtual Compton scattering. Phys. Rev. Lett. 114, 032001 (2015). arXiv:1410.6615 [hep-ex]

  29. Avakian, H., et al.: Deeply virtual compton scattering at 11 GeV with transversely polarized target using the CLAS12 Detector. 12-12-010

  30. Mazouz, M., et al.: (Hall-A Collaboration): Deeply virtual compton scattering off the neutron. Phys. Rev. Lett. 99, 242501 (2007)

    Article  ADS  Google Scholar 

  31. Niccolai, S., et al.: (CLAS12 proposal): Deeply virtual compton scattering on the neutron with CLAS12 at 11 GeV. 12-11-003

  32. Niccolai, S., Biselli, A., Keith, C., Pisano, S., Sokhan, D., et al. (CLAS12 proposal): Deeply virtual compton scattering on the neutron with a longitudinally polarized deuteron target. JLab experiment C12-15-004 (conditionally approved)

  33. Courtoy, A., Goldstein, G.R., Hernandez, J.O.G., Liuti, S., Rajan, A.: On the observability of the quark orbital angular momentum distribution. Phys. Lett. B 731, 141 (2014). doi:10.1016/j.physletb.2014.02.017. arXiv:1310.5157 [hep-ph]

    Article  ADS  Google Scholar 

  34. Rajan, A., Courtoy, A., Engelhardt, M., Liuti, S.: Parton transverse momentum and orbital angular momentum distributions. (2016). arXiv:1601.06117 [hep-ph]

  35. Chen, S., et al.: (CLAS Collaboration): Measurement of deeply virtual compton scattering with a polarized-proton target. Phys. Rev. Lett. 97, 072002 (2006)

    Article  ADS  Google Scholar 

  36. Biselli, A., et al.: (CLAS12 proposal): Deeply-virtual compton scattering with CLAS12 at 11 GeV. 12-06-119

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Silvia Pisano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisano, S., for the CLAS Collaboration. Precise Measurements of DVCS at JLab and Quark Orbital Angular Momentum. Few-Body Syst 57, 633–638 (2016). https://doi.org/10.1007/s00601-016-1120-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-016-1120-2

Navigation