Skip to main content
Log in

Quenched Dynamics of the Momentum Distribution of the Unitary Bose Gas

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We study the quenched dynamics of the momentum distribution of a unitary Bose gas under isotropic harmonic confinement within a time-dependent density functional approach based on our recently calculated Monte Carlo bulk equation of state. In our calculations the inter-atomic s-wave scattering length of the trapped bosons is suddenly increased to a very large value and the real-time evolution of the system is studied. Prompted by the very recent experimental data of 85Rb atoms at unitarity (Makotyn et al. in Nat Phys 10:116, 2014) we focus on the momentum distribution as a function of time. Our results suggest that at low momenta, a quasi-stationary momentum distribution is reached after a long transient, contrary to what found experimentally for large momenta which equilibrate on a time scale shorter than the one for three body losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li W., Ho T.-L.: Bose gases near unitarity. Phys. Rev. Lett. 108, 195301 (2012)

    Article  ADS  Google Scholar 

  2. Rem B.S., Grier A.T., Ferrier-Barbut I., Eismann U., Langen T., Navon N., Khaykovich L., Werner F., Petrov D.S., Chevy F., Salomon C.: Lifetime of the Bose gas with resonant interactions. Phys. Rev. Lett. 110, 163202 (2013)

    Article  ADS  Google Scholar 

  3. Fletcher R.J., Gaunt A.L., Navon N., Smith R.P., Hadzibabic Z.: Stability of a unitary Bose gas. Phys. Rev. Lett. 111, 125303 (2013)

    Article  ADS  Google Scholar 

  4. Makotyn P., Klauss C.E., Goldberger D.L., Cornell E.A., Jin D.S.: Universal dynamics of a degenerate unitary Bose gas. Nat. Phys. 10, 116 (2014)

    Article  Google Scholar 

  5. Castin, Y., Werner, F.: The unitary gas and its symmetry properties. In: Zwerger, W. (ed.) Lecture Notes in Physics, vol. 836, pp. 127–191. Springer, Berlin (2012)

  6. Zwerger, W. (ed.): The BCS–BEC Crossover and the Unitary Fermi Gas. Springer, Berlin (2012)

    Book  Google Scholar 

  7. Cowell S., Heiselberg H., Mazets I.E., Morales J., Pandharipande V.R., Pethick C.J.: Cold Bose gases with large scattering lengths. Phys. Rev. Lett. 88, 210403 (2002)

    Article  ADS  Google Scholar 

  8. Adhikari S.K., Salasnich L.: Nonlinear Schrödinger equation for a superfluid Bose gas from weak coupling to unitarity: study of vortices. Phys. Rev. A 77, 033618 (2008)

    Article  ADS  Google Scholar 

  9. Adhikari S.K., Salasnich L.: Superfluid Bose–Fermi mixture from weak coupling to unitarity. Phys. Rev. A 78, 043616 (2008)

    Article  ADS  Google Scholar 

  10. Song J.L., Zhou F.: Ground state properties of cold bosonic atoms at large scattering lengths. Phys. Rev. Lett. 103, 025302 (2009)

    Article  ADS  Google Scholar 

  11. Lee Y.-L., Lee Y.-W.: Universality and stability for a dilute Bose gas with a Feshbach resonance. Phys. Rev. A 81, 063613 (2010)

    Article  ADS  Google Scholar 

  12. Diederix J.M., van Heijst T.C.F., Stoof H.T.C.: Ground state of a resonantly interacting Bose gas. Phys. Rev. A 84, 033618 (2011)

    Article  ADS  Google Scholar 

  13. van Heugten, J.J.R.M., Stoof, H.T.C.: Theory of unitary Bose gases (2013). arXiv:1302.1792

  14. Rossi M., Salasnich L., Ancilotto F., Toigo F.: Monte Carlo simulations of the unitary Bose gas. Phys. Rev. A 89, 041602(R) (2014)

    Article  ADS  Google Scholar 

  15. Ho T.-L.: Universal thermodynamics of degenerate quantum gases in the unitarity limit. Phys. Rev. Lett. 92, 090402 (2004)

    Article  ADS  Google Scholar 

  16. Rossi, M., Ancilotto, F., Salasnich, L., Toigo, F.: Density functional theory of a trapped Bose gas with tunable scattering length: from weak-coupling to unitarity. Eur. Phys. J. arXiv:1408.3945

  17. Lahaye T., Metz J., Frolich B., Koch T., Meister M., Griesmaier A., Pfau T., Saito H., Kawaguchi Y., Ueda M.: d-wave collapse and explosion of a dipolar Bose–Einstein condensate. Phys. Rev. Lett. 101, 080401 (2008)

    Article  ADS  Google Scholar 

  18. Hohenberg P., Kohn W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  19. von Weizsäcker C.F.: Zur theorie der kernmassen. Z. Phys. 96, 431 (1935)

    Article  MATH  ADS  Google Scholar 

  20. Bogoliubov N.N.: On the theory of superfluidity. J. Phys. (USSR) 11, 23 (1947)

    Google Scholar 

  21. Lee T.D., Huang K., Yang C.N.: Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 1135 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. The coefficients c’s have been determined by ensuring continuity of the interpolating function and of its first three derivatives at x =  0.3 and x =  0.5 once the a 3 and the b’s have been fitted to the calculated values. This procedures automatically well reproduces the MC values in the interval 0.3 <  x <  0.5

  23. Gross E.P.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454 (1961)

    Article  MATH  Google Scholar 

  24. Pitaevskii L.P.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451 (1961)

    MathSciNet  Google Scholar 

  25. Leggett A.J.: Quantum Liquids. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  26. Landau L.D., Lifshitz E.M.: Fluid Mechanics, Course of Theoretical Physics, vol. 6. Pergamon Press, London (1987)

    Google Scholar 

  27. Popov V.N.: Functional Integrals in Quantum Field Theory and Statistical Physics. Reidel, Dordrecht (1983)

    Book  MATH  Google Scholar 

  28. Kim Y.E., Zubarev A.L.: Density-functional theory of bosons in a trap. Phys. Rev. A 67, 015602 (2003)

    Article  ADS  Google Scholar 

  29. Kohn W., Sham L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  30. Runge E., Gross E.K.U.: Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  31. Dalfovo F., Lastri A., Pricaupenko L., Stringari S., Treiner J.: Structural and dynamical properties of superfluid helium: a density-functional approach. Phys. Rev. B 52, 1193 (1995)

    Article  ADS  Google Scholar 

  32. Ancilotto F., Dalfovo F., Pitaevskij L., Toigo F.: Density pattern in supercritical flow of liquid He-4. Phys. Rev. B 71, 104530 (2005)

    Article  ADS  Google Scholar 

  33. Kim Y.E., Zubarev A.L.: Time-dependent density-functional theory for trapped strongly interacting fermionic atoms. Phys. Rev. A 70, 033612 (2004)

    Article  ADS  Google Scholar 

  34. Manini N., Salasnich L.: Bulk and collective properties of a dilute Fermi gas in the BCS–BEC crossover. Phys. Rev. A 71, 033625 (2005)

    Article  ADS  Google Scholar 

  35. Rançon A., Levin K.: Equilibrating dynamics in quenched Bose gases: characterizing multiple time regimes. Phys. Rev. A 90, 021602(R) (2014)

    Article  ADS  Google Scholar 

  36. Yin X., Radzihovsky L.: Quench dynamics of a strongly interacting resonant Bose gas. Phys. Rev. A 88, 063611 (2013)

    Article  ADS  Google Scholar 

  37. Kain B., Ling H.Y.: Nonequilibrium states of a quenched Bose gas. Phys. Rev. A 90, 063626 (2014)

    Article  ADS  Google Scholar 

  38. Sykes A.G., Corson J.P., D’Incao J.P., Koller A.P., Greene C.H., Rey A.M., Hazzard K.R.A., Bohn J.L.: Quenching to unitarity: quantum dynamics in a three-dimensional Bose gas. Phys. Rev. A 89, 021601(R) (2014)

    Article  ADS  Google Scholar 

  39. Kira M.: Excitation picture of an interacting Bose gas. Ann. Phys. 351, 200 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  40. Corson J.P., Bohn J.L.: Bound-state signatures in quenched Bose–Einstein condensates. Phys. Rev. A 91, 013616 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Rossi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ancilotto, F., Rossi, M., Salasnich, L. et al. Quenched Dynamics of the Momentum Distribution of the Unitary Bose Gas. Few-Body Syst 56, 801–807 (2015). https://doi.org/10.1007/s00601-015-0971-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-015-0971-2

Keywords

Navigation