Skip to main content
Log in

Using Linear Gluon Polarization Inside an Unpolarized Proton to Determine the Higgs Spin and Parity

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Gluons inside an unpolarized proton are in general linearly polarized in the direction of their transverse momentum, rendering the LHC effectively a polarized gluon collider. This polarization can be utilized in the determination of the spin and parity of the newly found Higgs-like boson. We focus here on the determination of the spin using the azimuthal Collins–Soper angle \({\phi}\) distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aad, G. et al. [ATLAS Collaboration]: Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012)

    Google Scholar 

  2. Chatrchyan, S. et al. [CMS Collaboration]: Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012)

    Google Scholar 

  3. Aad, G. et al. [ATLAS Collaboration]: Evidence for the spin-0 nature of the Higgs boson using ATLAS data. Phys. Lett. B 726, 120 (2013)

    Google Scholar 

  4. Chatrchyan, S. et al. [CMS Collaboration]: Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs. Phys. Rev. Lett. 110, 081803 (2013)

    Google Scholar 

  5. [ATLAS Collaboration]: Study of the spin of the new boson with up to 25 fb−1 of ATLAS data, ATLAS-CONF-2013-040. Study of the spin of the Higgs-like boson in the two photon decay channel using 20.7 fb−1 of pp collisions collected at \({\sqrt{s}}\) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-029

  6. [CMS Collaboration]: Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005. Properties of the observed Higgs-like resonance using the diphoton channel, CMS-PAS-HIG-13-016

  7. Choi S.Y., Miller D.J., Muhlleitner M.M., Zerwas P.M.: Identifying the Higgs spin and parity in decays to Z pairs. Phys. Lett. B 553, 61 (2003)

    Article  ADS  Google Scholar 

  8. Gao Y., Gritsan A.V., Guo Z., Melnikov K., Schulze M., Tran N.V.: Spin determination of single-produced resonances at hadron colliders. Phys. Rev. D 81, 075022 (2010)

    Article  ADS  Google Scholar 

  9. Bolognesi S. et al.: On the spin and parity of a single-produced resonance at the LHC. Phys. Rev. D 86, 095031 (2012)

    Article  ADS  Google Scholar 

  10. Choi S.Y., Muhlleitner M.M., Zerwas P.M.: Theoretical basis of Higgs-spin analysis in \({H \to \gamma\gamma}\) and \({Z\gamma}\) decays. Phys. Lett. B 718, 1031 (2013)

    Article  ADS  Google Scholar 

  11. Ellis J., Fok R., Hwang D.S., Sanz V., You T.: Distinguishing ‘Higgs’ spin hypotheses using \({\gamma \gamma}\) and W W* decays. Eur. Phys. J. C 73, 2488 (2013)

    Article  ADS  Google Scholar 

  12. Boer D., den Dunnen W.J., Pisano C., Schlegel M., Vogelsang W.: Linearly polarized gluons and the Higgs transverse momentum distribution. Phys. Rev. Lett. 108, 032002 (2012)

    Article  ADS  Google Scholar 

  13. den Dunnen, W.J., Boer, D., Pisano, C., Schlegel, M., Vogelsang, W.: Linearly polarized gluons and the Higgs transverse momentum distribution. arXiv:1205.6931 [hep-ph]

  14. Boer D., den Dunnen W.J., Pisano C., Schlegel M.: Determining the Higgs spin and parity in the diphoton decay channel. Phys. Rev. Lett. 111, 032002 (2013)

    Article  ADS  Google Scholar 

  15. Ji X.-d., Ma J.-P., Yuan F.: Transverse-momentum-dependent gluon distributions and semi-inclusive processes at hadron colliders. JHEP 0507, 020 (2005)

    Article  ADS  Google Scholar 

  16. Sun P., Xiao B.-W., Yuan F.: Gluon distribution functions and Higgs boson production at moderate transverse momentum. Phys. Rev. D 84, 094005 (2011)

    Article  ADS  Google Scholar 

  17. Ma J.P., Wang J.X., Zhao S.: TMD factorization for quarkonium production at low transverse momentum. Phys. Rev. D 88, 014027 (2013)

    Article  ADS  Google Scholar 

  18. Mulders P.J., Rodrigues J.: Transverse momentum dependence in gluon distribution and fragmentation functions. Phys. Rev. D 63, 094021 (2001)

    Article  ADS  Google Scholar 

  19. Qiu J.-W., Schlegel M., Vogelsang W.: Probing gluonic spin-orbit correlations in photon pair production. Phys. Rev. Lett. 107, 062001 (2011)

    Article  ADS  Google Scholar 

  20. Collins J.C., Soper D.E.: Angular distribution of dileptons in high-energy hadron collisions. Phys. Rev. D 16, 2219 (1977)

    Article  ADS  Google Scholar 

  21. Landau L.D.: On the angular momentum of a two-photon system. Dokl. Akad. Nauk Ser. Fiz. 60, 207 (1948)

    Google Scholar 

  22. Yang C.-N.: Selection rules for the dematerialization of a particle into two photons. Phys. Rev. 77, 242 (1950)

    Article  ADS  MATH  Google Scholar 

  23. den Dunnen, W.J., Schlegel, M.: Determining the Higgs spin and parity in the di-photon decay channel using gluon polarization. arXiv:1310.4965 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilco J. den Dunnen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

den Dunnen, W.J. Using Linear Gluon Polarization Inside an Unpolarized Proton to Determine the Higgs Spin and Parity. Few-Body Syst 55, 309–315 (2014). https://doi.org/10.1007/s00601-013-0764-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-013-0764-4

Keywords

Navigation