Skip to main content
Log in

A Possible Way for Constructing Generators of the Poincaré Group in Quantum Field Theory

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Starting from the instant form of relativistic quantum dynamics for a system of interacting fields, where amongst the ten generators of the Poincaré group only the Hamiltonian and the boost operators carry interactions, we offer an algebraic method to satisfy the Poincaré commutators.We do not need to employ the Lagrangian formalism for local fields with the Nöether representation of the generators. Our approach is based on an opportunity to separate in the primary interaction density a part which is the Lorentz scalar. It makes possible apply the recursive relations obtained in this work to construct the boosts in case of both local field models (for instance with derivative couplings and spins ≥ 1) and their nonlocal extensions. Such models are typical of the meson theory of nuclear forces, where one has to take into account vector meson exchanges and introduce meson-nucleon vertices with cutoffs in momentum space. Considerable attention is paid to finding analytic expressions for the generators in the clothed-particle representation, in which the so-called bad terms are simultaneously removed from the Hamiltonian and the boosts. Moreover, the mass renormalization terms introduced in the Hamiltonian at the very beginning turn out to be related to certain covariant integrals that are convergent in the field models with appropriate cutoff factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dirac P.A.M.: Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392–399 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Keister B.D., Polyzou W.N.: Relativistic Hamiltonian dynamics in nuclear and particle physics. Adv. Nucl. Phys. 20, 225–479 (1991)

    Google Scholar 

  3. Bakker Bernard L.G.: Forms of relativistic dynamics. In: Latal, H., Schweiger, W. (eds) Lectures Notes in Physics, pp. 1–54. Springer, Berlin (2001)

    Google Scholar 

  4. Heinzl, T.: Light-cone quantization foundations and applications. In: Latal, H., Schweiger, W. (eds.) Lectures Notes in Physics. Springer, Berlin (2001)

  5. Foldy L.L.: Relativistic particle systems with interactions. Phys. Rev. 122, 275–288 (1961)

    Article  ADS  Google Scholar 

  6. Krajcik R.A., Foldy L.L.: Relativistic center-of-mass variables for composite systems with arbitrary internal interactions. Phys. Rev. D 10, 1777–1795 (1974)

    Article  ADS  Google Scholar 

  7. Friar J.L.: Relativistic effects on the wave function of a moving system. Phys. Rev. C 12, 695–698 (1975)

    Article  ADS  Google Scholar 

  8. Friar J.L.: Pion-exchange contributions to the nuclear charge, current and Hamiltonian operators. Ann. Phys. 104, 380–426 (1977)

    Article  ADS  Google Scholar 

  9. Glöckle W., Müller L.: Relativistic theory of interacting particles. Phys. Rev. C 23, 1183–1195 (1981)

    Article  ADS  Google Scholar 

  10. Fuda M.G.: A new picture for light front dynamics. Ann. Phys. 231, 1–40 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  11. Wentzel G.: Quantum Theory of Fields. Interscience, New York (1949)

    Google Scholar 

  12. Schwinger J.: Non-abelian gauge fields. Relativistic invariance. Phys. Rev. 127, 324–330 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Okubo S.: Diagonalization of Hamiltonian and Tamm-Dancoff equation. Prog. Theor. Phys. 12, 603 (1954)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Krüger A., Glöckle W.: Approach towards N-nucleon effective generators of the Poincaré group derived from a field theory. Phys. Rev. C 59, 1919–1929 (1999)

    Article  ADS  Google Scholar 

  15. Krüger A., Glöckle W.: One-nucleon effective generators of the Poincaré group derived from a field theory: mass renormalization. Phys. Rev. C 60, 024004 (1999)

    Article  ADS  Google Scholar 

  16. Arnous E., Heitler W., Takahashi Y.: On a convergent non-local field theory. Nuovo. Cim. 16, 671–682 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guillot J.C., Jaus W., O’Raifeartaigh L.: A survey of the Heitler-Arnous non-local field theory. Proc. R.I.A. 64, 93–105 (1965)

    Google Scholar 

  18. Efimov, G.V.: Problems of the Quantum Theory of Nonlocal Interactions. Nauka, Moscow (1985, in Russian)

  19. Friedrichs K.: Mathematical Aspects of the Quantum Theory of Field. Interscience, New York (1953)

    Google Scholar 

  20. Weinberg S.: The Quantum Theory of Fields, vol. 1. University Press, Cambridge (1995)

    Google Scholar 

  21. Melde T., Canton L., Plessas W.: Structure of meson-baryon interaction vertices. Phys. Rev. Lett. 102, 132002 (2009)

    Article  ADS  Google Scholar 

  22. Dubovyk E.A., Shebeko A.V.: The method of unitary clothing transformations in the theory of nucleon-nucleon scattering. Few-Body Syst. 48, 109–142 (2010)

    Article  ADS  Google Scholar 

  23. Shebeko A.V., Shirokov M.I.: Clothing procedure in relativistic quantum field theory and its applications to description of electromagnetic interactions with nuclei (bound systems). Progr. Part. Nucl. Phys. 44, 75–86 (2000)

    Article  ADS  Google Scholar 

  24. Korda V.Yu., Shebeko A.V.: Clothed particle representation in quantum field theory: mass renormalization. Phys. Rev. D 70, 085011 (2004)

    Article  ADS  Google Scholar 

  25. Nelson E.: Interaction of nonrelativistic particles with a quantized scalar field. J. Math. Phys. 5, 1190–1197 (1964)

    Article  ADS  Google Scholar 

  26. Eckmann J.-P.: A model with persistent vacuum. Commun. Math. Phys. 18, 247–264 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Albeverio S.: Scattering theory in a model of quantum fields. I. J. Math. Phys. 18, 1800–1816 (1973)

    Article  ADS  Google Scholar 

  28. Greenberg O., Schweber S.: Clothed particle operators in simple models of quantum field theory. Nuovo Cim. 8, 378–406 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shebeko A.V., Shirokov M.I.: Unitary transformations in quantum field theory and bound states. Phys. Part. Nuclei 32, 31–95 (2001)

    Google Scholar 

  30. Korda V.Yu., Canton L., Shebeko A.V.: Relativistic interactions for the meson-two-nucleon system in the clothed-particle unitary representation. Ann. Phys. 322, 736–768 (2007)

    Article  ADS  MATH  Google Scholar 

  31. Kita H.: A non-trivial example of a relativistic quantum theory of particles without divergence difficulties. Prog. Theor. Phys. 35, 934–959 (1966)

    Article  ADS  MATH  Google Scholar 

  32. Kita H.: Another convergent, relativistic model theory of interacting particles: a relativistic version of a modified Lee model. Prog. Theor. Phys. 39, 1333–1360 (1968)

    Article  ADS  Google Scholar 

  33. Chandler, C.: Relativistic scattering theory with particle creation. Contribution to the 17th International IUPAP Conference on Few Body Physics (Durham, USA) and private communication (2003)

  34. Friedrichs, K.: Perturbation of Spectra in Hilbert Space. Providence (1965)

  35. Wichmann E.H., Crichton J.H.: Cluster decomposition properties of the S matrix. Phys. Rev. 132, 2788–2799 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  36. Dubovyk, I., Shebeko, A.V.: The method of unitary clothing transformations in the theory of nucleon-nucleon scattering. Talk at the 19th International IUPAP Conference on Few-Body Problems in Physics (Bonn, 2009). To appear in Conference Proceedings (2009)

  37. Shirokov M.I.: Relativistic nonlocal quantum field theory. Int. J. Theor. Phys. 41, 1027–1041 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schweber S.S.: An Introduction to Relativistic Quantum Field Theory. Row, Peterson, New York (1961)

    Google Scholar 

  39. Bjorken J.D., Drell S.D.: Relativistic Quantum Mechanics. McGraw-Hill, New York (1964)

    Google Scholar 

  40. Shebeko A.V.: Local analog of the Siegert theorem for covariant description of electromagnetic interactions with nuclei. Sov. J. Nucl. Phys. 52, 970–975 (1990)

    Google Scholar 

  41. Belinfante F.J.: On the covariant derivative of tensor-undors. Physica 7, 305–324 (1940)

    Article  MathSciNet  ADS  Google Scholar 

  42. Gasiorowicz S.: Elementary Particle Physics. Wiley, New York (1966)

    Google Scholar 

  43. Korda V.Yu., Frolov P.A.: Clothing of particles in the meson-nucleon system: mass and charge renormalization. BRAS: Physics. 72, 391–397 (2008)

    Google Scholar 

  44. Korhin A.Yu., Shebeko A.V.: The method of Okubo’s effective operators and relativistic model of nuclear structure. Phys. At. Nucl. 56, 1663–1671 (1993)

    Google Scholar 

  45. Shebeko A.V.: The S matrix in the method of unitary clothing transformations. Nucl. Phys. A 737, 252–254 (2004)

    Google Scholar 

  46. Dirac P.A.M.: The evolution of the physicist’s picture of nature. Sci. Am. 208, 45–53 (1963)

    Article  ADS  Google Scholar 

  47. Shirokov, M.I.: Mass renormalization using noncovariant perturbation theory. JINR-P2-2000-277, Dubna 14 (2000)

  48. Umezawa H., Kawabe R.: An improvement on the integrations appearing in perturbation theory. Prog. Theor. Phys. 4, 420 (1949)

    Article  MathSciNet  ADS  Google Scholar 

  49. Kawabe R., Umezawa H.: The self-energy of a dirac particle, and its relativistic covariance. Prog. Theor. Phys. 4, 461 (1949)

    Article  MathSciNet  ADS  Google Scholar 

  50. Chung P.L., Keister B.D., Coester F.: Relativistic calculation of the deuteron quadrupole and magnetic moments. Phys. Rev. C 39, 1544–1549 (1989)

    Article  ADS  Google Scholar 

  51. Honzawa N., Ishida S.: Electromagnetic static moments of deuteron in the Bethe-Salpeter formalism. Phys. Rev. C 45, 47–68 (1992)

    Article  ADS  Google Scholar 

  52. Lev F.M., Pace E., Salme G.: Deuteron magnetic and quadrupole moments with a Poincaré covariant current operator in the front-form dynamics. Phys. Rev. Lett. 83, 5250–5253 (1999)

    Article  ADS  Google Scholar 

  53. Bondarenko S.G., Burov V.V., Molochkov A.V., Smirnov G.I., Toki H.: Bethe-Salpeter approach with the separable interaction for the deuteron. Prog. Part. Nucl. Phys. 48, 449–535 (2002)

    Article  ADS  Google Scholar 

  54. Garçon M., Van Orden J.W.: The Deuteron: Structure and Form Factors. Adv. Nucl. Phys. 26, 293–378 (2002)

    Article  Google Scholar 

  55. Gilman R., Gross F.: Electromagnetic structure of the deuteron. J. Phys. G: Nucl. Part. Phys. 28, R37–R116 (2002)

    Article  ADS  Google Scholar 

  56. Glaser V., Jakšić B.: Electromagnetic properties of particles with spin. Nuovo Cim. 5, 1197–1203 (1957)

    Article  MATH  Google Scholar 

  57. Korchin, A.Yu., Shebeko, A.V.: Photo- and electrodisintegration of the deuteron in the Bethe-Salpeter formalism. KIPT preprint 88-56; CNIInform, Moscow (1988)

  58. Burov V.V. et al.: Gauge-independent contributions to the amplitude of elastic electron scattering by nuclei (systems of bound particles). Phys. At. Nucl. 59, 784–788 (1996)

    Google Scholar 

  59. Shebeko, A., Frolov, P., Dubovyk, I.: Relativistic interactions for meson-nucleon systems in the clothed particle representation. In: Proc. ISHEPP (2010, to appear)

  60. Rho M., Wilkinson D.: Mesons in Nuclei. North Holland, Amsterdam (1980)

    Google Scholar 

  61. Hamme B., Glöckle W.: Relativistic two-body bound states in motion. Few-Body Syst. 13, 1–10 (1992)

    Article  ADS  Google Scholar 

  62. Elster Ch., Thomas J.H., Glöckle W.: Two-body T matrices without angular momentum decomposition: energy and momentum dependencies. Few-Body Syst. 24, 55–79 (1998)

    Article  ADS  Google Scholar 

  63. Arenhövel H., Ritz F., Wilbois T.: Elastic electron-deuteron scattering with consistent meson exchange and relativistic contributions of leading order. Phys. Rev. C 61, 034002-1–034002-10 (2000)

    Article  ADS  Google Scholar 

  64. Levchuk L.G., Shebeko A.V.: On a generalization of Siegert’s theorem. A corrected result. Phys. At. Nuclei. 56, 227–229 (1993)

    ADS  Google Scholar 

  65. Levchuk L.G., Canton L., Shebeko A.V.: Nuclear effects in positive pion electroproduction on the deuteron near threshold. Eur. Phys. J. A 21, 29–36 (2004)

    Article  ADS  Google Scholar 

  66. Gradstein I.S., Ryzhik I.M.: Tables of Integrals, Series and Products. Academic Press, New York (1980)

    Google Scholar 

  67. Pauli W., Rose M.E.: Remarks on the polarization effects in the positron theory. Phys. Rev. 49, 462–465 (1936)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shebeko.

Additional information

In memory of Mikhail Shirokov, the excellent scientist and modest person

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shebeko, A.V., Frolov, P.A. A Possible Way for Constructing Generators of the Poincaré Group in Quantum Field Theory. Few-Body Syst 52, 125–164 (2012). https://doi.org/10.1007/s00601-011-0262-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-011-0262-5

Keywords

Navigation