Skip to main content
Log in

Testing the Concept of Quark–Hadron Duality with the ALEPH τ Decay Data

  • Published:
Few-Body Systems Aims and scope Submit manuscript

An Erratum to this article was published on 06 June 2012

Abstract

We propose a modified procedure for extracting the numerical value for the strong coupling constant α s from the τ lepton hadronic decay rate into non-strange particles in the vector channel. We employ the concept of the quark–hadron duality specifically, introducing a boundary energy squared s p > 0, the onset of the perturbative QCD continuum in Minkowski space (Bertlmann et al. in Nucl Phys B 250:61, 1985; de Rafael in An introduction to sum rules in QCD. In: Lectures at the Les Houches Summer School. arXiv: 9802448 [hep-ph], 1997; Peris et al. in JHEP 9805:011, 1998). To approximate the hadronic spectral function in the region s > s p, we use analytic perturbation theory (APT) up to the fifth order. A new feature of our procedure is that it enables us to extract from the data simultaneously the QCD scale parameter \({\Lambda_{\overline{\rm MS}}}\) and the boundary energy squared s p. We carefully determine the experimental errors on these parameters which come from the errors on the invariant mass squared distribution. For the \({\overline{\rm MS}}\) scheme coupling constant, we obtain \({\alpha_s(m^{2}_{\tau})=0.3204\pm 0.0159_{exp.}}\). We show that our numerical analysis is much more stable against higher-order corrections than the standard one. Additionally, we recalculate the “experimental” Adler function in the infrared region using final ALEPH results. The uncertainty on this function is also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertlmann R.A., Launer G., de Rafael E.: Gaussian sum rules in quantum chromodynamics and local duality. Nucl. Phys. B 250, 61 (1985)

    Article  ADS  Google Scholar 

  2. de Rafael, E.: An Introduction to sum rules in QCD. In: Lectures at the Les Houches Summer School. (1997) arXiv:9802448 [hep-ph]

  3. Peris S., Perrottet M., de Rafael E.: Matching long and short distances in large-N c QCD. JHEP 9805, 011 (1998)

    Article  ADS  Google Scholar 

  4. Shifman M.A., Vainshtein A.I., Zakharov V.I.: QCD and resonance physics. Theoretical foundations. Nucl. Phys. B 147, 385 (1979)

    Article  ADS  Google Scholar 

  5. Poggio E.C., Quinn H.R., Wainberg S.: Smearing method in the quark model. Phys. Rev. D 13, 1958–1968 (1976)

    Article  ADS  Google Scholar 

  6. Braaten E., Narison S., Pich A.: QCD analysis of the tau hadronic width. Nucl. Phys. B 373, 581 (1992)

    Article  ADS  Google Scholar 

  7. Shifman M.A.: Quark–hadron duality. In: Shifman, M.A. (eds) Boris Ioffe Festschrift. At the Frontier of Particle Physics, Handbook of QCD, World Scientific, Singapore (2001)

    Chapter  Google Scholar 

  8. Peris S., Phily B., de Rafael E.: Tests of Large-N c QCD from Hadronic τ Decay. Phys. Rev. Lett. 86, 14–17 (2001)

    Article  ADS  Google Scholar 

  9. Cata O., Golterman M., Peris S.: Unraveling duality violations in hadronic tau decays. Phys. Rev. D 77, 093006 (2008)

    Article  ADS  Google Scholar 

  10. Cata O., Golterman M., Peris S.: Possible duality violations in τ decay and their impact on the determination of α s . Phys. Rev. D 79, 053002 (2009)

    Article  ADS  Google Scholar 

  11. Schael S. et al.: Branching ratios and spectral functions of τ decays: final ALEPH measurements and physics implications [ALEPH Collaboration]. Phys. Rept. 421, 191 (2005)

    Article  ADS  Google Scholar 

  12. The ALEPH data for the spectral functions. Available at http://aleph.web.lal.in2p3.fr/tau/specfun.html

  13. Davier M., Höcker A., Zhang Z.: The physics of hadronic tau decays. Rev. Mod. Phys. 78, 1043 (2006)

    Article  ADS  Google Scholar 

  14. Davier M., Höcker A.H., Zhang Z.: The determination of α s from τ decays revisited. Eur. Phys. J. C 56, 305–322 (2008)

    Article  ADS  Google Scholar 

  15. Mason Q. et al.: Accurate determinations of α s from realistic lattice QCD. Phys. Rev. Lett. 95, 052002 (2005)

    Article  ADS  Google Scholar 

  16. Maltman K., Yavin T.: \({\alpha_s(M_{z}^{2})}\) from hadronic τ decays. Phys. Rev. D 78, 094020 (2008)

    Article  ADS  Google Scholar 

  17. Pivovarov A.A.: Sov. J. Nucl. Phys. 54, 676 (1991)

    Google Scholar 

  18. Pivovarov A.A.: Renormalization group analysis of the τ-lepton decay within QCD. Z. Phys. C 53, 461–464 (1992) [hep-ph/0302003]

    Article  ADS  Google Scholar 

  19. Le Diberger F., Pich A.: The perturbative QCD prediction to R τ revisited. Phys. Lett. B 286, 147–152 (1992)

    Article  ADS  Google Scholar 

  20. Jamin M.: Contour-improved versus fixed-order perturbation theory in hadronic tau decays. JHEP 0509, 058 (2005)

    Article  ADS  Google Scholar 

  21. Beneke M., Jamin M.: α s and the τ hadronic width: fixed-order, contour-improved and higher-order perturbation theory. JHEP 0809, 044 (2008)

    Article  ADS  Google Scholar 

  22. Körner J.G., Krajewski F., Pivovarov A.A.: Strong coupling constant from τ decay within a renormalization scheme invariant treatment. Phys. Rev. D 63, 036001 (2003)

    Article  Google Scholar 

  23. Kataev A.L., Starshenko V.V.: Estimates of the higher-order QCD corrections to R(s), R τ and deep inestic scattering sum rules. Mod. Phys. Lett. A 10, 235 (1995)

    Article  ADS  Google Scholar 

  24. Raczka, P.A.: Towards more reliable perturbative QCD predictions at moderate energies. arXiv:0602085 [hep-ph] (2006)

  25. Gardi E., Grunberg G., Karliner M.: Can the QCD running coupling have a causal analyticity structure?. J. High Energy Phys. 07, 007 (1998)

    Article  ADS  Google Scholar 

  26. Magradze, B.A.: The gluon propagator in analytic perturbation theory. In: Bezrukov, F.L. et al. (eds.) Proceedings of the 10th International Seminar “QUARKS-98” Suzdal, Russia, 1998, vol. 1, p. 158. Russian Academy of Sciences, Institute for Nuclear Research, Moscow (1999)

  27. Magradze B.A.: An analytic approach to perturbative QCD. Int. J. Mod. Phys. A 15, 2715 (2000)

    ADS  MATH  Google Scholar 

  28. Magradze B.A.: A novel series solution to the renormalization group equation in QCD. Few Body Syst. 40, 71–99 (2006)

    Article  ADS  Google Scholar 

  29. Krasnikov A.N., Pivovarov A.A.: Renormalization schemes and renormalons. Mod. Phys. Lett. A 11, 835 (1996)

    Article  ADS  Google Scholar 

  30. Shirkov D.V., Solovtsov I.L.: Analytic model for the QCD running coupling with universal \({\bar{\alpha}_s(0)}\) value. Phys. Rev. Lett. 79, 1209 (1997)

    Article  ADS  Google Scholar 

  31. Dokshitzer Yu., Marchesini G., Webber B.R.: Dispersive approach to power-behaved contributions in QCD hard processes. Nucl. Phys. B 469, 93 (1996)

    Article  ADS  Google Scholar 

  32. Grunberg G.: On power corrections in the dispersive approach. JHEP 9811, 006 (1998)

    Article  ADS  Google Scholar 

  33. Milton K.A., Solovtsov I.L., Solovtsova O.P.: Analytic perturbation theory and inclusive tau decay. Phys. Lett. B 415, 104 (1997)

    Article  ADS  Google Scholar 

  34. Milton K.A., Solovtsov I.L., Solovtsova O.P., Yasnov V.I.: Renormalization scheme and higher loop stability in hadronic tau decay within analytic perturbation theory. Eur. Phys. J. C 14, 495–501 (2000)

    Article  ADS  Google Scholar 

  35. Solovtsov I.L., Shirkov D.V.: Analytic approach in quantum chromodynamics. Theor. Math. Phys. 120, 1220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shirkov D.V.: Analytic perturbation theory in analyzing some QCD observables. Eur. Phys. J. C 22, 331 (2001)

    Article  ADS  MATH  Google Scholar 

  37. Shirkov D.V.: Lett. Math. Phys. 48, 135 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shirkov D.V., Solovtsov I.L.: Ten years of the analytic perturbation theory in QCD. Theor. Math. Phys. 150, 132–152 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Milton K.A., Solovtsova O.P.: Perturbative expansions in the inclusive decay of the tau lepton. Int. J. Mod. Phys. A 17, 3789 (2002)

    Article  ADS  MATH  Google Scholar 

  40. Milton K.A., Solovtsov I.L., Solovtsova O.P.: The Adler function for light quarks in analytic perturbation theory. Phys. Rev. D 64, 016005 (2001)

    Article  ADS  Google Scholar 

  41. Cvetic, G., Valenzuela, C., Schmidt, I.: A modification of minimal analytic QCD at low energies. arXiv:0508101 [hep-ph] (2005)

  42. Bakulev A.P., Mikhailov S.V., Stefanis N.G.: QCD analytic perturbation theory. From integer powers to any power of the running coupling. Phys. Rev. D 72, 074014 (2005)

    Article  ADS  Google Scholar 

  43. Prosperi G.M., Raciti M., Simolo C.: On the running coupling constant in QCD. Prog. Part. Nucl. Phys. 58, 387–438 (2007)

    Article  ADS  Google Scholar 

  44. Barate R. et al.: Measurement of the axial-vector τ spectral functions and determination of \({\alpha_{s}(M_{z}^{2})}\) [ALEPH Collaboration]. Eur. Phys. J. C 4, 409–431 (1998)

    Article  ADS  Google Scholar 

  45. Ackerstaff K. et al.: Measurements of the strong coupling constant α s and the vector and axial vector spectral functions in hadronic tau decayes. [OPAL Collaboration]. Eur. Phys. J. C 7, 571 (1999)

    Article  ADS  Google Scholar 

  46. Eidelman S., Jagerlehner F., Kataev A.L., Veretin O.: Testing non-perturbative strong interaction effects via the Adler function. Phys. Lett. B 454, 369–380 (1999)

    Article  ADS  Google Scholar 

  47. Chetyrkin K.G., Kataev A.L., Tkachov F.V.: Higher order corrections to \({\sigma_{t} (e^{+}+ e^{-}\rightarrow}\) Hadrons) in quantum chromodynamics. Phys. Lett. B 85, 277 (1979)

    Article  ADS  Google Scholar 

  48. Gorishnii S.G., Kataev A.L., Larin S.A.: The O (\({\alpha_{s}^{3} }\)) corrections to \({\sigma_{tot} (e+ e-\rightarrow}\) hadrons) and \({\Gamma (\tau\rightarrow}\) tau-neutrino + hadrons) in QCD. Phys. Lett. B 259, 144–150 (1991)

    Article  ADS  Google Scholar 

  49. Surguladze, L.R., Samuel, M.A.: Total hadronic cross-section in e+ e- annihilation at the four loop level of perturbative QCD. Phys. Rev. Lett. 66, 560–563 (1991) [1991 Erratum-ibid. 66, 2416 (1991)]

    Google Scholar 

  50. Baikov P.A., Chetyrkin K.G., Kühn J.H.: Hadronic Z- and tau-decays in order \({\alpha_{s}^{4}}\) . Phys. Rev. Lett. 101, 012002 (2008)

    Article  ADS  Google Scholar 

  51. Chetyrkin K.G., Kühn J.H., Kwiatkowski A.: QCD corrections to the e + e cross-section and the Z boson decay rate: concepts and results. Phys. Rep. 277, 189–281 (1996)

    Article  ADS  Google Scholar 

  52. Kourashev, D.S.: The QCD observables expansion over the scheme-independent two-loop coupling constant powers, the scheme dependence reduction. arXiv:9912410 [hep-ph] (1999)

  53. Kourashev D.S., Magradze B.A.: Explicit expressions for Euclidean and Minkowskian QCD observables in analytic perturbation theory. Theor. Math. Phys. 135, 531 (2003)

    Article  Google Scholar 

  54. Girone M., Neubert M.: Test of the running of α s in τ decays. Phys. Rev. Lett. 76, 3061–3064 (1996)

    Article  ADS  Google Scholar 

  55. Rodrigo G., Santamaria A.: QCD matching conditions at thresholds. Phys. Lett. B 313, 441–446 (1993)

    Article  ADS  Google Scholar 

  56. Chetyrkin K.G., Kniehl B.A., Steinhauser M.: Strong coupling constant with flavour thresholds at four loops in the MS-bar scheme. Phys. Rev. Lett. 79, 2184–2187 (1997)

    Article  ADS  Google Scholar 

  57. Rodrigo G., Pich A., Santamaria A.: α s (m Z ) from tau decays with matching conditions at three loops. Phys. Lett. B 424, 367–374 (1998)

    Article  ADS  Google Scholar 

  58. Yao W.-M. et al.: Review of Particle Physics (The Particle Data Group). J. Phys. G 33, 1 (2006)

    Article  ADS  Google Scholar 

  59. Hudson, D.J.: Lectures on Elementary Statistics and Probability, 101 pp. CERN, Geneva (1963)

  60. Van Ritberger T., Vermaseren J.A.M., Larin S.A.: The four-loop β-function in quantum chromodynamics. Phys. Lett. B 400, 379 (1997)

    Article  ADS  Google Scholar 

  61. Corless R.M. et al.: On the Lambert W function. Adv. Comput. Math. 5, 329 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Magradze.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00601-012-0449-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magradze, B.A. Testing the Concept of Quark–Hadron Duality with the ALEPH τ Decay Data. Few-Body Syst 48, 143–169 (2010). https://doi.org/10.1007/s00601-010-0113-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-010-0113-9

Keywords

Navigation