Skip to main content
Log in

The Self-Dual Gauge Fields and the Domain Wall Fermion Zero Modes

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

A new type of gauge fixing of the Coulomb gauge domain wall fermion system that reduces the fluctuation of the effective running coupling and the effective mass of arbitrary momentum direction including the region outside the cylinder cut region is proposed and tested in the 163 × 32 × 16 gauge configurations of RBC/UKQCD collaboration. The running coupling at the lowest momentum point does not show infrared suppression and compatible with the experimental data extracted from the JLab collaboration. The source of the fluctuation of the effective mass near momentum p = 0.6 GeV region is expected to be due to the domain wall fermion zero modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Furui S.: Propagator of the lattice domain wall fermion and the staggered fermion. Few Body Syst. 45, 51 (2009). doi:10.1007/s00601-009-0008-9 arXiv:0801.0325[hep-lat]

    Article  ADS  Google Scholar 

  2. Allton C. et al.: 2+1 Flavor domain wall QCD on a (2fm)3 lattice: light meson spectroscopy with L s  = 16. Phys. Rev. D 76, 014504 (2007) arXiv:hep-lat/0701013

    Article  ADS  Google Scholar 

  3. Bernard C. et al.: QCD spectrum with three quark flavors. Phys. Rev. D64, 054506 (2001)

    ADS  Google Scholar 

  4. Furui S., Nakajima H.: Infrared features of the Landau gauge QCD. Phys. Rev. D 69, 074505 (2004)

    Article  ADS  Google Scholar 

  5. Furui S., Nakajima H.: What the Gribov copy tells about confinement and the theory of dynamical chiral symmetry breaking. Phys. Rev. D 70, 094504 (2004) hep-lat/0403021

    Article  ADS  Google Scholar 

  6. Furui S.: Roles of the color antisymmetric ghost propagator in the infrared QCD. Few Body Syst. 43, 63 (2009). doi:10.1007/s00601-008-0005-4 arXiv:0805.0680[hep-lat]

    Article  ADS  Google Scholar 

  7. Furui S., Nakajima H.: Infrared features of unquenched Landau gauge QCD. Few Body Syst. 40, 101 (2006)

    Article  ADS  Google Scholar 

  8. Furui S, Nakajima H.: Roles of the quark field in the infrared lattice Coulomb gauge and Landau gauge QCD. PoS LATTICE 2007, 301 (2007)

    Google Scholar 

  9. Deur A., Burkert V., Chen J.P., Korsch W.: Experimental determination of the effective strong coupling constant. Phys. Lett. B650, 244 (2006)

    ADS  Google Scholar 

  10. Dudal D., Gracey J.A, Sorella S.P., Vandersickel N., Verschelde H.: Refinement of the Gribov-Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results. Phys. Rev. D78, 065047 (2008)

    ADS  Google Scholar 

  11. Bogolubosky I.L., Ilgenfritz E.-M., Müller-Preussker M., Sternbeck A.: Lattice gluodynamics computation of Landau-gauge Green’s functions in the deep infrared. Phys. Lett. B676, 69 (2009)

    ADS  Google Scholar 

  12. Cucchieri A., Mendes T.: Constraints on the infrared behavior of the ghost propagator in Yang-Mills theories. Phys. Rev. D78, 084503 (2008)

    Google Scholar 

  13. Kondo K.I.: Kugo-Ojima color confinement criteroin and Gribov-Zwanziger horizon condition. Phys. Lett. B678, 322 (2009) arXiv:0904.4897v2

    ADS  Google Scholar 

  14. van Baal P.: Instanton moduli for T 3 × R. Nucl. Phys. Proc. Suppl. 49, 238 (1996) arXiv:hep-th/9512223v2

    Article  MATH  ADS  Google Scholar 

  15. D’Adda A., Di Veccia P.: Supersymmetry and instantons. Phys. Lett. B73, 162 (1978)

    ADS  Google Scholar 

  16. Shamir Y.: The euclidean spectrum of Kaplan’s lattice chiral fermions. Phys. Lett. B305, 357 (1993)

    ADS  Google Scholar 

  17. Shamir Y.: Chiral fermions from lattice boundaries. Nucl. Phys. B406, 90 (1993) arXiv:hep-lat/9303005

    Article  MathSciNet  ADS  Google Scholar 

  18. Furman V., Shamir Y.: Axial symmetries in lattice QCD with Kaplan fermions. Nucl. Phys. B439, 54 (1995) arXiv:hep-lat/9405004

    Article  ADS  Google Scholar 

  19. Narayanan R., Neuberger H.: Infinitely many regulator fields for chiral fermions. Phys. Lett. B302, 62 (1993)

    ADS  Google Scholar 

  20. Atiyah M.F., Ward R.S.: Instantons and algebraic geometry. Commun. Math. Phys. 55, 117 (1977)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Atiyah M.F., Hitchin N.J., Drinfeld V.G., Manin Y.I.: Construction of instantons. Phys. Lett. A65, 185 (1978)

    MathSciNet  ADS  Google Scholar 

  22. Ward R.S.: Ansätze for the self-dual Yang Mills fields. Commun. Math. Phys. 80, 563 (1981)

    Article  ADS  Google Scholar 

  23. Corrigan E., Goddard P.: An n monopole solution with 4n−1 degrees of freedom. Commun. Math. Phys. 80, 575 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  24. Bilson-Thompson S., Bonnet F.D.R., Leinweber D.B., Williams A.G.: Cooling for instantons and the Wrath of Nahm. Nucl. Phys. B Proc. Suppl. 109, 116 (2002) arXiv:hep-lat/0112034

    Article  MATH  ADS  Google Scholar 

  25. Boucaud Ph. et al.: Instantons and \({\langle A^2\rangle}\) condensates. Phys. Rev. D66, 034504 (2002)

    ADS  Google Scholar 

  26. Kondo K.-I., Murakami T., Shinohara T., Imai T.: Renormalizing a BRST invariant composite operator of mass dimension 2 in Yang-Mills theory. Phys. Rev. D65, 085034 (2002)

    MathSciNet  ADS  Google Scholar 

  27. Baldicchi M. et al.: Bound-state approach to the QCD coupling sonstant at low-energy scales. Phys. Rev. Lett. 99, 242001 (2007)

    Article  ADS  Google Scholar 

  28. Shirkov D.V.: Large regular QCD coupling at low energy? In: Seiler, E., Sibold, K. (eds) Quantum Field Theory and Beyond, World Scientific, Singapore (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadataka Furui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furui, S. The Self-Dual Gauge Fields and the Domain Wall Fermion Zero Modes. Few-Body Syst 46, 221–228 (2009). https://doi.org/10.1007/s00601-009-0067-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-009-0067-y

Keywords

Navigation