Skip to main content

Advertisement

Log in

Field carcinogenesis and biological significance of the potential of the bystander effect: carcinogenesis, therapeutic response, and tissue regeneration

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

The “bystander effect” is a transmission phenomenon mediating communication from target to non-target cells, as well as cell-to-cell interactions between neighboring and distantly located cells. In this narrative review, we describe the fundamental and clinical significance of the bystander effect with respect to cell-to-cell interactions in carcinogenesis, therapeutic response, and tissue regeneration. In carcinogenesis, the bystander effect mediates communications between tumor microenvironments and non-malignant epithelial cells and has been suggested to impact heterogeneous tumorigenic cells in tumors and cancerized fields. In therapeutic response, the bystander effect mediates communications between drug-sensitive and drug-resistant cells and may transmit both drug efficacy and resistance. Therefore, control of therapeutic response transmission via the bystander effect might offer a promising future cancer treatment. Finally, in tissue regeneration, circulating cells and stromal cells may differentiate into various cells for the purpose of tissue regeneration under direction of the bystander effect arising from surrounding cells in a defective space. We hope that the findings we present will promote the development of innovative cancer therapies and tissue regeneration methodologies from the viewpoint of cell-to-cell interactions through the bystander effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mothersill C, Rusin A, Fernandez-Palomo C, Seymour C. History of bystander effects research 1905-present; what is in a name? Int J Radiat Biol. 2018;94:696–707.

    Article  CAS  PubMed  Google Scholar 

  2. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH. Nanotubular highways for intercellular organelle transport. Science. 2004;303:1007–10.

    Article  CAS  PubMed  Google Scholar 

  3. Sherer NM, Mothes W. Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis. Trends Cell Biol. 2008;18:414–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oshima A. Structure and closure of connexin gap junction channels. FEBS Lett. 2014;588:1230–7.

    Article  CAS  PubMed  Google Scholar 

  5. Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA, et al. Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood. 2001;97:3075–85.

    Article  CAS  PubMed  Google Scholar 

  6. Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6:963–8.

    Article  CAS  PubMed  Google Scholar 

  7. Prevo LJ, Sanchez CA, Galipeau PC, Reid BJ. p53-mutant clones and field effects in Barrett’s esophagus. Cancer Res. 1999;59:4784–7.

    CAS  PubMed  Google Scholar 

  8. Damania D, Roy HK, Subramanian H, Weinberg DS, Rex DK, Goldberg MJ, et al. Nanocytology of rectal colonocytes to assess risk of colon cancer based on field cancerization. Cancer Res. 2012;72:2720–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Curtius K, Wright NA, Graham TA. An evolutionary perspective on field cancerization. Nat Rev Cancer. 2018;18:19–32.

    Article  CAS  PubMed  Google Scholar 

  10. Baba Y, Ishimoto T, Kurashige J, Iwatsuki M, Sakamoto Y, Yoshida N, et al. Epigenetic field cancerization in gastrointestinal cancers. Cancer Lett. 2016;375:360–6.

    Article  CAS  PubMed  Google Scholar 

  11. Dotto GP. Multifocal epithelial tumors and field cancerization: stroma as a primary determinant. J Clin Invest. 2014;124:1446–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi CR, Bakir IA, Hart AL, Graham TA. Clonal evolution of colorectal cancer in IBD. Nat Rev Gastroenterol Hepatol. 2017;14:218–29.

    Article  PubMed  Google Scholar 

  13. Reid BJ, Li X, Galipeau PC, Vaughan TL. Barrett’s oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat Rev Cancer. 2010;10:87–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hazelton WD, Curtius K, Inadomi JM, Vaughan TL, Meza R, Rubenstein JH, et al. The role of gastroesophageal reflux and other factors during progression to esophageal adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2015;24:1012–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morita M, Kuwano H, Ohno S, Seo Y, Tomoda H, Furusawa M, et al. Multiple occurrence of carcinoma in the upper aerodigestive tract associated with esophageal cancer: reference to smoking, drinking and family history. Int J Cancer. 1994;58:207–10.

    Article  CAS  PubMed  Google Scholar 

  16. Morita M, Saeki H, Mori M, Kuwano H, Sugimachi K. Risk factors for esophageal cancer and the multiple occurrence of carcinoma in the upper aerodigestive tract. Surgery. 2002;131:S1-6.

    Article  PubMed  Google Scholar 

  17. Miyazaki T, Sohda M, Higuchi T, Tanaka N, Suzuki S, Sakai M, et al. Effectiveness of FDG-PET in screening of synchronous cancer of other organs in patients with esophageal cancer. Anticancer Res. 2014;34:283–7.

    PubMed  Google Scholar 

  18. Kuwano H, Ohno S, Matsuda H, Mori M, Sugimachi K. Serial histologic evaluation of multiple primary squamous cell carcinomas of the esophagus. Cancer. 1988;61:1635–8.

    Article  CAS  PubMed  Google Scholar 

  19. Kuwano H, Matsuda H, Matsuoka H, Kai H, Okudaira Y, Sugimachi K. Intra-epithelial carcinoma concomitant with esophageal squamous cell carcinoma. Cancer. 1987;59:783–7.

    Article  CAS  PubMed  Google Scholar 

  20. Kuwano H, Ueo H, Sugimachi K, Inokuchi K, Toyoshima S, Enjoji M. Glandular or mucus-secreting components in squamous cell carcinoma of the esophagus. Cancer. 1985;56:514–8.

    Article  CAS  PubMed  Google Scholar 

  21. Kuwano H, Yokobori T, Ide M, Saeki H, Sohda M, Makoto Sakai M, et al. Coexistence of superficial carcinogenesis of resident epithelium besides neuroendocrine neoplasm of the digestive tract. Cancer Med. 2022;11:983–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuwano H, Miyazaki T, Tsutsumi S, Fukuchi M, Nomoto K-I, Shimura T, et al. Malignant transformation of the mouse anorectal epithelium induced by an inoculated human cancer cell line. Dig Dis Sci. 2004;49:1912–21.

    Article  PubMed  Google Scholar 

  23. Hu B, Castillo E, Harewood L, Ostano P, Reymond A, Dummer R, et al. Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling. Cell. 2012;149:1207–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rutter M, Saunders B, Wilkinson K, Rumbles S, Schofield G, Kamm M, et al. Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology. 2004;126:451–9.

    Article  PubMed  Google Scholar 

  25. Saadi A, Shannon NB, Lao-Sirieix P, O’Donovan M, Walker E, Clemons NJ, et al. Stromal genes discriminate preinvasive from invasive disease, predict outcome, and highlight inflammatory pathways in digestive cancers. Proc Natl Acad Sci USA. 2010;107:2177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fernandez-Sanchez ME, Barbier S, Whitehead J, Béalle G, Michel A, Latorre-Ossa H, et al. Mechanical induction of the tumorigenic beta-catenin pathway by tumour growth pressure. Nature. 2015;523:92–5.

    Article  CAS  PubMed  Google Scholar 

  27. Thirlwell C, Will OC, Domingo E, Graham TA, McDonald SAC, Oukrif D, et al. Clonality assessment and clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. Gastroenterology. 2010;138:1441–54.

    Article  CAS  PubMed  Google Scholar 

  28. Lin J, Takata M, Murata H, Goto Y, Kido K, Ferrone S, et al. Polyclonality of BRAF mutations in acquired melanocytic nevi. J Natl Cancer Inst. 2009;101:1423–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guccione C, Yadlapati R, Shah S, Knight R, Curtius K. Challenges in determining the role of microbiome evolution in Barrett’s esophagus and progression to esophageal adenocarcinoma. Microorganisms. 2021;9:2003.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang X, Undi RB, Ali N, Huycke MM. It takes a village: microbiota, parainflammation, paligenosis and bystander effects in colorectal cancer initiation. Dis Model Mech. 2021;14:dmm048793.

    Article  CAS  PubMed  Google Scholar 

  31. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.

    Article  CAS  PubMed  Google Scholar 

  32. Boku N. HER2-positive gastric cancer. Gastric Cancer. 2014;17:1–12.

    Article  CAS  PubMed  Google Scholar 

  33. Abrahao-Machado LF, Scapulatempo-Neto C. HER2 testing in gastric cancer: an update. World J Gastroenterol. 2016;22:4619–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Satala CB, Jung I, Stefan-van Staden RI, Kovacs Z, Molnar C, Bara T Jr, et al. HER2 heterogeneity in gastric cancer: a comparative study, using two commercial antibodies. J Oncol. 2020;2020:8860174.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yamashita H, Yando Y, Nishio M, Hamaguchi M, Mita K, Kobayashi S, et al. Immunohistochemical evaluation of hormone receptor status for predicting response to endocrine therapy in metastatic breast cancer. Breast Cancer. 2006;13:74–83.

    Article  PubMed  Google Scholar 

  36. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28:2784–95.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Davies C, Pan H, Godwin J, Gray R, Arriagada R, Raina V, et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet. 2013;381:805–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Early Breast Cancer Trialists' Collaborative G, Davies C, Godwin J, Gray R, Clarke M, Cutter D, et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet. 2011;378:771–84.

  39. Klammer H, Mladenov E, Li F, Iliakis G. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status. Cancer Lett. 2015;356:58–71.

    Article  CAS  PubMed  Google Scholar 

  40. Verma N, Tiku AB. Significance and nature of bystander responses induced by various agents. Mutat Res Rev Mutat Res. 2017;773:104–21.

    Article  CAS  PubMed  Google Scholar 

  41. Yamasaki H, Katoh F. Novel method for selective killing of transformed rodent cells through intercellular communication, with possible therapeutic applications. Cancer Res. 1988;48:3203–7.

    CAS  PubMed  Google Scholar 

  42. Aasen T, Mesnil M, Naus CC, Lampe PD, Laird DW. Gap junctions and cancer: communicating for 50 years. Nat Rev Cancer. 2016;16:775–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Elshami AA, Saavedra A, Zhang H, Kucharczuk JC, Spray DC, Fishman GI, et al. Gap junctions play a role in the “bystander effect” of the herpes simplex virus thymidine kinase/ganciclovir system in vitro. Gene Ther. 1996;3:85–92.

    CAS  PubMed  Google Scholar 

  44. Arora S, Heyza JR, Chalfin EC, Ruch RJ, Patrick SM. Gap junction intercellular communication positively regulates cisplatin toxicity by inducing DNA damage through bystander signaling. Cancers. 2018;10:368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garcia-Rodriguez L, Perez-Torras S, Carrio M, Cascante A, García-Ribas I, Mazo A, et al. Connexin-26 is a key factor mediating gemcitabine bystander effect. Mol Cancer Ther. 2011;10:505–17.

    Article  CAS  PubMed  Google Scholar 

  46. Xiao J, Wang X, Wu Y, Zhao Q, Liu X, Zhang G, et al. Synergistic effect of resveratrol and HSV-TK/GCV therapy on murine hepatoma cells. Cancer Biol Ther. 2019;20:183–91.

    Article  CAS  PubMed  Google Scholar 

  47. Xu Z, Guo D, Jiang Z, Tong R, Jiang P, Bai L, et al. Novel HER2-targeting antibody-drug conjugates of trastuzumab beyond T-DM1 in breast cancer: Trastuzumab deruxtecan(DS-8201a) and (vic-)trastuzumab duocarmazine (SYD985). Eur J Med Chem. 2019;183: 111682.

    Article  CAS  PubMed  Google Scholar 

  48. Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016;107:1039–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Modi S, Saura C, Yamashita T, Park YH, Kim S-B, Tamura K, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382:610–21.

    Article  CAS  PubMed  Google Scholar 

  50. Shitara K, Iwata H, Takahashi S, Tamura K, Park H, Modi S, et al. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive gastric cancer: a dose-expansion, phase 1 study. Lancet Oncol. 2019;20:827–36.

    Article  CAS  PubMed  Google Scholar 

  51. Shitara K, Bang YJ, Iwasa S, Sugimoto N, Ryu M-H, Sakai D, et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med. 2020;382:2419–30.

    Article  CAS  PubMed  Google Scholar 

  52. Kubo N, Araki K, Kuwano H, Shirabe K. Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol. 2016;22:6841–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fiori ME, Di Franco S, Villanova L, Bianca P, Stassi G, De Maria R. Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer. 2019;18:70.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bu L, Baba H, Yasuda T, Uchihara T, Ishimoto T. Functional diversity of cancer-associated fibroblasts in modulating drug resistance. Cancer Sci. 2020;111:3468–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baba Y, Nomoto D, Okadome K, Ishimoto T, Iwatsuki M, Miyamoto Y, et al. Tumor immune microenvironment and immune checkpoint inhibitors in esophageal squamous cell carcinoma. Cancer Sci. 2020;111:3132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bai H, Wang Z, Chen K, Zhao J, Lee JJ, Wang S, et al. Influence of chemotherapy on EGFR mutation status among patients with non-small-cell lung cancer. J Clin Oncol. 2012;30:3077–83.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Koizumi F, Shimoyama T, Taguchi F, Saijo N, Nishio K. Establishment of a human non-small cell lung cancer cell line resistant to gefitinib. Int J Cancer. 2005;116:36–44.

    Article  CAS  PubMed  Google Scholar 

  58. Taguchi F, Koh Y, Koizumi F, Tamura T, Saijo N, Nishio K. Anticancer effects of ZD6474, a VEGF receptor tyrosine kinase inhibitor, in gefitinib (“Iressa”)-sensitive and resistant xenograft models. Cancer Sci. 2004;95:984–9.

    Article  CAS  PubMed  Google Scholar 

  59. Azuma Y, Yokobori T, Mogi A, Yajima T, Kosaka T, Iijima M, et al. Cancer exosomal microRNAs from gefitinib-resistant lung cancer cells cause therapeutic resistance in gefitinib-sensitive cells. Surg Today. 2020;50:1099–106.

    Article  CAS  PubMed  Google Scholar 

  60. Kuwano H, Hashizume M, Yang Y, Kholoussy AM, Matsumoto T. The nature of inner cellular lining of the expanded polytetrafluoroethylene vascular graft: immunohistochemical study. Int Surg. 1992;77:186–9.

    CAS  PubMed  Google Scholar 

  61. Okamoto R, Yajima T, Yamazaki M, Kanai T, Mukai M, Okamoto S, et al. Damaged epithelia regenerated by bone marrow-derived cells in the human gastrointestinal tract. Nat Med. 2002;8:1011–7.

    Article  CAS  PubMed  Google Scholar 

  62. Surinov BP, Karpova NA, Isaeva VG, Kulish Iu S. [Communicative behavioral effects and disorders of immunity]. Zh Vyssh Nerv Deiat Im I P Pavlova. 1998;48:1073–9.

    CAS  PubMed  Google Scholar 

  63. Surinov VP, Karpova NA, Isaeva VG, Kulish Iu S. [Natural excretions of mice in the postradiation period and contact induction of immunodeficiencies]. Radiats Biol Radioecol. 1998;38:9–14.

    CAS  PubMed  Google Scholar 

  64. Mothersill C, Bucking C, Smith RW, Agnihotri N, Oneill A, Kilemade M, et al. Communication of radiation-induced stress or bystander signals between fish in vivo. Environ Sci Technol. 2006;40:6859–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Sayaka Okada and Ms. Kayoko Takahashi for their expert assistance.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroyuki Kuwano or Takehiko Yokobori.

Ethics declarations

Conflict of interest

We have no conflicts of interest to declare in association with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuwano, H., Yokobori, T., Miyazaki, T. et al. Field carcinogenesis and biological significance of the potential of the bystander effect: carcinogenesis, therapeutic response, and tissue regeneration. Surg Today 53, 545–553 (2023). https://doi.org/10.1007/s00595-022-02524-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-022-02524-5

Keywords

Navigation