Skip to main content

Advertisement

Log in

Relationship between stromal regulatory T cells and the response to neoadjuvant chemotherapy for locally advanced rectal cancer

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Background

In addition to the direct power of anticancer drugs, the effectiveness of anticancer therapy depends on the host immune function. The present study investigated whether or not the reduction rate and histological response of preoperative chemotherapy were related to the immune microenvironment surrounding a primary tumor of the rectum.

Methods

Sixty-five patients received preoperative chemotherapy followed by resection from 2012 to 2014; all of these patients were retrospectively analyzed. CD3, CD8, and FoxP3 were immunohistochemically examined as markers for T lymphocytes, cytotoxic T lymphocytes, and regulatory T lymphocytes (Treg), respectively. The correlation between the tumor-infiltrating lymphocyte composition and the tumor reduction rate and histological response to neoadjuvant chemotherapy was investigated.

Results

The average tumor reduction rate was 41.5% ± 18.8%. According to RECIST, 47 patients (72.3%) achieved a partial response (PR), and 1 patient (1.5%) achieved a complete response (CR). Eight patients (12.3%) showed a grade 2 histological response, and 2 (3.1%) showed a grade 3 response. A multivariate analysis demonstrated that a low Treg infiltration in stromal cell areas was significantly associated with the achievement of a PR or CR [odds ratio (OR) 7.69; 95% confidence interval (CI) 1.96–33.33; p < 0.01] and a histological grade 2 or 3 response (OR 11.11; 95% CI 1.37–98.04; p = 0.02).

Conclusion

A low Treg infiltration in the stromal cell areas may be a marker of a good response to neoadjuvant chemotherapy in patients with locally advanced rectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bosset JF, Collette L, Calais G, et al. Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med. 2006;355:1114–23.

    Article  CAS  PubMed  Google Scholar 

  2. Gerard JP, Conroy T, Bonnetain F, et al. Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3–4 rectal cancer: results of FFCD 9203. J Clin Oncol. 2006;24:4620–5.

    Article  PubMed  Google Scholar 

  3. Sauer R, Liersch T, Merkel S, et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol. 2012;30:1926–33.

    Article  CAS  PubMed  Google Scholar 

  4. Peeters KC, van de Velde CJ, Leer JW, et al. Late side effects of short-course preoperative radiotherapy combined with total mesorectal excision for rectal cancer: increased bowel dysfunction in irradiated patients—a Dutch colorectal cancer group study. J Clin Oncol. 2005;23:6199–206.

    Article  CAS  PubMed  Google Scholar 

  5. Pollack J, Holm T, Cedermark B, et al. Long-term effect of preoperative radiation therapy on anorectal function. Dis Colon Rectum. 2006;49:345–52.

    Article  PubMed  Google Scholar 

  6. Birginsson H, Pahlman L, Gunnarsson U, et al. Adverse effects of preoperative radiation therapy for rectal cancer: long-term follow-up of the Swedish Rectal Cancer Trial. J Clin Oncol. 2005;23:8697–705.

    Article  Google Scholar 

  7. Marijnen CA, van de Velde CJ, Putter H, et al. Impact of short-term preoperative radiotherapy on health-related quality of life and sexual functioning in primary rectal cancer: report of a multicenter randomized trial. J Clin Oncol. 2005;23:1847–58.

    Article  PubMed  Google Scholar 

  8. Stephens RJ, Thompson LC, Quirke P, et al. Impact of short-course preoperative radiotherapy for rectal cancer on patients’ quality of life: date from the Medical Research Council CR07 National Cancer Institute of Canada Clinical Trials Group C016 randomized clinical trial. J Clin Oncol. 2010;28:4233–9.

    Article  PubMed  Google Scholar 

  9. Cho Y, Miyamoto M, Kato K, et al. CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res. 2003;63:1555–9.

    CAS  PubMed  Google Scholar 

  10. Hiraoka K, Miyamoto M, Cho Y, et al. Concurrent infiltration by CD8+ T cells and CD4+ T cells is favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer. 2006;94:275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Loi S, Sirtaine N, Piette F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02–98. J Clin Oncol. 2013;31:860–7.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang L, Conejo-Garcia JR, Katsaris D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348:203–13.

    Article  CAS  PubMed  Google Scholar 

  13. Mei Z, Liu Y, Liu C, et al. Tumour-infiltrating inflammation and prognosis in colorectal cancer: systematic review and meta-analysis. Br J Cancer. 2014;110:1595–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942–9.

    Article  CAS  PubMed  Google Scholar 

  15. deLeeuw RJ, Kost SE, Kakal JA, et al. The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res. 2012;18:3022–9.

    Article  CAS  PubMed  Google Scholar 

  16. Salama P, Phillips M, Grieu F, et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009;27:186–92.

    Article  PubMed  Google Scholar 

  17. Nowak AK, Lake RA, Marzo AL, et al. Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol. 2003;170:4905–13.

    Article  CAS  PubMed  Google Scholar 

  18. Ghiringhelli F, Menard C, Puig PE, et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother. 2007;56:641–8.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang B, Bowerman NA, Salama JK, et al. Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med. 2007;204:49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramakrishman R, Assudani D, Nagaraj S, et al. Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J Clin invest. 2010;120:1111–24.

    Article  Google Scholar 

  21. Burnette BC, Liang H, Lee Y, et al. The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res. 2011;71:2488–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gupta A, Probst HC, Vuong V, et al. Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. J Immunol. 2012;189:558–66.

    Article  CAS  PubMed  Google Scholar 

  23. Kim S, Ramakrishman R, Lavilla-Alonso S, et al. Radiation-induced autophagy potentiates immunotherapy of cancer via up-regulation of mannose 6-phosphate receptor on tumor cells in mice. Cancer Immunol Immunother. 2014;63:1009–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frey B, Stache C, Rubner Y, et al. Combined treatment of human colorectal tumor cell lines with chemotherapeutic agents and ionizing irradiation can in vitro induce tumor cell death forms with immunogenic potential. J Immunotoxicol. 2012;9:301–13.

    Article  CAS  PubMed  Google Scholar 

  25. Maeda K, Hazama S, Tokuno K, et al. Impact of chemotherapy for colorectal cancer on regulatory T-cells and tumor immunity. Anticancer Res. 2011;31:4569–74.

    CAS  PubMed  Google Scholar 

  26. Ladoire S, Arnould L, Apetoh L, et al. Pathological complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells. Clin Cancer Res. 2008;14:2413–20.

    Article  CAS  PubMed  Google Scholar 

  27. McCoy MJ, Hemmings C, Anyaegbu CC, et al. Tumour-infiltrating regulatory T cell density before neoadjuvant chemoradiotherapy for rectal cancer does not predict treatment response. Oncotarget. 2017;8:19803–13.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Article  CAS  PubMed  Google Scholar 

  29. Homma Y, Taniguchi K, Murakami T, et al. Immunological impact of neoadjuvant chemoradiotherapy in patients with borderline resectable pancreatic ductal adenocarcinoma. Ann Surg Oncol. 2014;21(2):670–6.

    Article  PubMed  Google Scholar 

  30. Nakagawa K, Tanaka K, Homma Y, et al. Low Infiltration of peritumoral regulatory T cell predicts worse outcome following resection of colorectal liver metastases. Ann Surg Oncol. 2015;22(1):180–6.

    Article  PubMed  Google Scholar 

  31. McCoy MJ, Hemmings C, Miller TJ, et al. Low stromal Foxp3+ regulatory T-cell density is associated with complete response to neoadjuvant chemoradiotherapy in rectal cancer. Br J Cancer. 2015;113:1677–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Teng F, Meng X, Kong L, et al. Tumor-infiltrating lymphocytes, forkhead box P3, programmed death ligand-1, and cytotoxic T lymphocyte-associated antigen-4 expressions before and after neoadjuvant chemoradiation in rectal cancer. Transl Res. 2015;166:721–32.

    Article  CAS  PubMed  Google Scholar 

  33. Matsutani S, Shibutani M, Maeda K, et al. Significance of tumor-infiltrating lymphocytes before and after neoadjuvant therapy for rectal cancer. Cancer Sci. 2018;109:966–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roxburgh CS, Shia J, Vakiani E, Daniel T, Weiser MR. Potential immune priming of the tumor microenvironment with FOLFOX chemotherapy in locally advanced rectal cancer. Oncoimminology. 2018;22:e1435227.

    Article  Google Scholar 

  35. Rettig L, Seidenberg S, Parvanova I, et al. Gemcitabine depletes regulatory T-cells in human and mice and enhances triggering of vaccine-specific cytotoxic T-cells. Int J Cancer. 2011;129:832–8.

    Article  CAS  PubMed  Google Scholar 

  36. van der Most RG, Currie AJ, Mahendran S, et al. Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy. Cancer Immunol Immunother. 2009;58:1219–28.

    Article  PubMed  Google Scholar 

  37. Frey B, Rubner Y, Kulzer L, et al. Antitumor immune responses induced by ionizing irradiation and further immune stimulation. Cancer Immunol Immunother. 2014;63:29–36.

    Article  CAS  PubMed  Google Scholar 

  38. Rizzo S, Bronte G, Fanale D, et al. Prognostic vs. predictive molecular biomarkers in colorectal cancer: is KRAS and BRAF wild type status required for anti-EGFR therapy? Cancer Treat Rev. 2010;36(3):S56-61.

    Article  CAS  PubMed  Google Scholar 

  39. Vakiani E, Solit DB. KRAS and BRAF: drug targets and predictive biomarkers. J Pathol. 2011;223:219–29.

    Article  CAS  PubMed  Google Scholar 

  40. Granville CA, Memmott RM, Balogh A, et al. A central role for Foxp+ regulatory T cell in K-Ras-driven lung tumorigenesis. PLoS ONE. 2009;4:5061.

    Article  Google Scholar 

  41. Zdanov S, Mandapathil M, Abu Eid R, et al. Mutant KRAS conversion of conventional T cells into regulatory T cells. Cancer Immunol Res. 2016;4:354–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rödel C, Thomas P, Papadoupolos T, et al. Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol. 2005;23:8688–96.

    Article  PubMed  Google Scholar 

  43. Sclafani F, Cunningham D. Neoadjuvant chemotherapy without radiotherapy for locally advanced rectal cancer. Fut Oncol. 2014;10:2243–57.

    Article  CAS  Google Scholar 

  44. Michael-Robinson JM, Biemer-Hüttmann A, Purdie DM, et al. Tumour infiltrating lymphocytes and apoptosis are independent features in colorectal cancer stratified according to microsatellite instability status. Gut. 2001;48:360–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoshino T, Arnold D, Taniguchi H, et al. Pan-Asian adapted ESMO consensus guidelines for management of patients with metastatic colorectal cancer: a JSMO-ESMO initiative endorsed by CSCO, KACO, MOS, SSO and TOS. Ann oncol. 2018;29:44–70.

    Article  CAS  PubMed  Google Scholar 

  46. Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;27:1386–422.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to give many thanks to H. Sakurada for performing skillful laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itaru Endo.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekizawa, K., Nakagawa, K., Ichikawa, Y. et al. Relationship between stromal regulatory T cells and the response to neoadjuvant chemotherapy for locally advanced rectal cancer. Surg Today 52, 198–206 (2022). https://doi.org/10.1007/s00595-021-02311-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-021-02311-8

Navigation