Skip to main content

Advertisement

Log in

METTL14 promotes the development of diabetic kidney disease by regulating m6A modification of TUG1

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Background

Diabetic kidney disease (DKD) is one of the most common diabetic complications. Endoplasmic reticulum stress (ERS) is an important step for renal tubular epithelial cell apoptosis during DKD progression. Herein, the role and regulatory mechanism of METTL14 in ERS during DKD progression were investigated.

Methods

DKD animal and cell models were established by streptozotocin (STZ) and high glucose (HG), respectively. HE and Masson staining were performed to analyze renal lesions in DKD mouse. Cell viability and proliferation were determined by MTT and EdU staining, respectively. HK2 cell apoptosis was analyzed by flow cytometry. TUG1 m6A level was determined by Me-RIP. The interaction between TUG1, LIN28B and MAPK1 was analyzed by RIP and RNA pull-down assays.

Results

HG stimulation promoted apoptosis and increased ERS marker proteins (GRP78, CHOP and caspase12) expression in HK2 cells, while these changes were reversed by METTL14 knockdown. METTL14 inhibited TUG1 stability and expression level in an m6A-dependent manner. As expected, TUG1 knockdown abrogated METTL14 knockdown’s inhibition on HG-induced HK2 cell apoptosis and ERS. In addition, TUG1 inactivated MAPK1/ERK signaling by binding with LIN28B. And TUG1 overexpression’s repression on HG-induced HK2 cell apoptosis and ERS was abrogated by MAPK1 signaling activation. Meanwhile, METTL14 knockdown or TUG1 overexpression protected against STZ-induced renal lesions and renal fibrosis in DKD mouse.

Conclusion

METTL14 promoted renal tubular epithelial cell apoptosis and ERS by activating MAPK/ERK pathway through m6A modification of TUG1, thereby accelerating DKD progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article.

Abbreviations

DM:

Diabetes mellitus

DKD:

Diabetic kidney disease

m6A:

N6 methyladenosine

METTL14:

Methyltransferase methyltransferase-like 14

LncRNAs:

Long noncoding RNAs

TUG1:

Taurine upregulated gene 1

STZ:

Streptozotocin

HG:

High glucose

MAPK:

Mitogen-activated protein kinases

ERK:

Extracellular signal-regulation, kinase

JNK:

C-Jun-N-terminal kinase

ERS:

Endoplasmic reticulum stress

RBP:

RNA binding protein

MTT:

3-(4, 5-Dimethylthiazolyl2)-2, 5-diphenyltetrazolium bromide

Bcl-2:

B-cell CLL/lymphoma 2

GRP78:

Glucose-regulated protein78

CHOP:

C/EBP homologous protein

EdU:

Ethynyl-2′-deoxyuridine

RIP:

RNA immunoprecipitation

Me-RIP:

Methylated RNA binding protein immunoprecipitation

HE:

Hematoxylin–eosin

Scr:

Serum creatinine

BUN:

Blood urea nitrogen

qRT-PCR:

Quantitative real-time polymerase chain reaction

References

  1. Maresch CC, Stute DC, Fleming T, Lin J, Hammes HP, Linn T (2019) Hyperglycemia induces spermatogenic disruption via major pathways of diabetes pathogenesis. Sci Rep 9(1):13074

    Article  PubMed  PubMed Central  Google Scholar 

  2. VR ALBVR, Tan SH, Candasamy M, Bhattamisra SK (2019) Diabetic nephropathy: an update on pathogenesis and drug development. Diabetes Metab Syndr 13(1):754–762

    Article  Google Scholar 

  3. Sharma D, Bhattacharya P, Kalia K, Tiwari V (2017) Diabetic nephropathy: New insights into established therapeutic paradigms and novel molecular targets. Diabetes Res Clin Pract 128:91–108

    Article  CAS  PubMed  Google Scholar 

  4. Kato M, Natarajan R (2014) Diabetic nephropathy—emerging epigenetic mechanisms. Nat Rev Nephrol 10(9):517–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. La Rocca E, Fiorina P, Astorri E, Rossetti C, Lucignani G, Fazio F et al (2000) Patient survival and cardiovascular events after kidney-pancreas transplantation: comparison with kidney transplantation alone in uremic IDDM patients. Cell Transpl 9(6):929–932

    Article  Google Scholar 

  6. Petrazzuolo A, Sabiu G, Assi E, Maestroni A, Pastore I, Lunati ME et al (2023) Broadening horizons in mechanisms, management, and treatment of diabetic kidney disease. Pharmacol Res 190:106710

    Article  CAS  PubMed  Google Scholar 

  7. Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochem Biophys Acta 1833(12):3460–3470

    Article  CAS  PubMed  Google Scholar 

  8. Hu H, Tian M, Ding C, Yu S (2018) The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol 9:3083

    Article  CAS  PubMed  Google Scholar 

  9. He Z, Zhou Y, Huang Y, Wang Q, Zheng B, Zhang H et al (2017) Dl-3-n-butylphthalide improves functional recovery in rats with spinal cord injury by inhibiting endoplasmic reticulum stress-induced apoptosis. Am J Transl Res 9(3):1075–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang J, Morris MW Jr, Dorsett-Martin WA, Drake LC, Anderson CD (2013) Autophagy is involved in endoplasmic reticulum stress-induced cell death of rat hepatocytes. J Surg Res 183(2):929–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu G, Sun Y, Li Z, Song T, Wang H, Zhang Y et al (2008) Apoptosis induced by endoplasmic reticulum stress involved in diabetic kidney disease. Biochem Biophys Res Commun 370(4):651–656

    Article  CAS  PubMed  Google Scholar 

  12. Roundtree IA, Evans ME, Pan T, He C (2017) Dynamic RNA modifications in gene expression regulation. Cell 169(7):1187–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lei L, Bai YH, Jiang HY, He T, Li M, Wang JP (2021) A bioinformatics analysis of the contribution of m6A methylation to the occurrence of diabetes mellitus. Endocr Connect 10(10):1253–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma L, Chen T, Zhang X, Miao Y, Tian X, Yu K et al (2021) The m(6)A reader YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-dependent antioxidant function. Redox Biol 38:101801

    Article  CAS  PubMed  Google Scholar 

  15. Lu Z, Liu H, Song N, Liang Y, Zhu J, Chen J et al (2021) METTL14 aggravates podocyte injury and glomerulopathy progression through N(6)-methyladenosine-dependent downregulating of Sirt1. Cell Death Dis 12(10):881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li M, Deng L, Xu G (2021) METTL14 promotes glomerular endothelial cell injury and diabetic nephropathy via m6A modification of α-klotho. Mol Med 27(1):106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmitz SU, Grote P, Herrmann BG (2016) Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci 73(13):2491–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang H, Yan Y, Hu Q, Zhang X (2021) LncRNA MALAT1/microRNA let-7f/KLF5 axis regulates podocyte injury in diabetic nephropathy. Life Sci 266:118794

    Article  CAS  PubMed  Google Scholar 

  19. Ge Y, Wang J, Wu D, Zhou Y, Qiu S, Chen J et al (2019) lncRNA NR_038323 suppresses renal fibrosis in diabetic nephropathy by targeting the miR-324-3p/DUSP1 Axis. Mol Ther Nucleic Acids 17:741–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang WY, Wang YF, Ma P, Xu TP, Shu YQ (2017) Taurine-upregulated gene 1: a vital long non-coding RNA associated with cancer in humans. Mol Med Rep 16(5):6467–6471

    Article  CAS  PubMed  Google Scholar 

  21. Li SY, Susztak K (2016) The long noncoding RNA Tug1 connects metabolic changes with kidney disease in podocytes. J Clin Invest 126(11):4072–4075

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang F, Gao X, Zhang R, Zhao P, Sun Y, Li C (2019) LncRNA TUG1 ameliorates diabetic nephropathy by inhibiting miR-21 to promote TIMP3-expression. Int J Clin Exp Pathol 12(3):717–729

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lei X, Zhang L, Li Z, Ren J (2018) Astragaloside IV/lncRNA-TUG1/TRAF5 signaling pathway participates in podocyte apoptosis of diabetic nephropathy rats. Drug Des Dev Ther 12:2785–2793

    Article  CAS  Google Scholar 

  24. Meng L, Lin H, Huang X, Weng J, Peng F, Wu S (2022) METTL14 suppresses pyroptosis and diabetic cardiomyopathy by downregulating TINCR lncRNA. Cell Death Dis 13(1):38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xin X, Khan ZA, Chen S, Chakrabarti S (2004) Extracellular signal-regulated kinase (ERK) in glucose-induced and endothelin-mediated fibronectin synthesis. Lab Investig 84(11):1451–1459

    Article  CAS  PubMed  Google Scholar 

  26. Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF (2015) Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res 35(6):600–604

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Chen J, Liang H, Cai Y, Li X, Yan L et al (2022) Human umbilical cord-derived mesenchymal stem cells not only ameliorate blood glucose but also protect vascular endothelium from diabetic damage through a paracrine mechanism mediated by MAPK/ERK signaling. Stem Cell Res Ther 13(1):258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng S, Li L, Song C, Jin H, Ma S, Kang P (2020) Sitagliptin relieves diabetic nephropathy fibrosis via the MAPK/ERK signaling pathway. Minerva Endocrinol 45(3):273–275

    Article  PubMed  Google Scholar 

  29. Jin J, Ma Y, Tong X, Yang W, Dai Y, Pan Y et al (2020) Metformin inhibits testosterone-induced endoplasmic reticulum stress in ovarian granulosa cells via inactivation of p38 MAPK. Hum Reprod 35(5):1145–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Victor P, Umapathy D, George L, Juttada U, Ganesh GV, Amin KN et al (2021) Crosstalk between endoplasmic reticulum stress and oxidative stress in the progression of diabetic nephropathy. Cell Stress Chaperones 26(2):311–321

    Article  CAS  PubMed  Google Scholar 

  31. Xu J, Liu L, Gan L, Hu Y, Xiang P, Xing Y et al (2021) Berberine acts on C/EBPβ/lncRNA Gas5/miR-18a-5p loop to decrease the mitochondrial ROS generation in HK-2 Cells. Front Endocrinol 12:675834

    Article  Google Scholar 

  32. Cheng Q, Pan J, Zhou ZL, Yin F, Xie HY, Chen PP et al (2021) Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy. Acta Pharmacol Sin 42(6):954–963

    Article  CAS  PubMed  Google Scholar 

  33. Yu XZ, Yang BW, Ao MY, Wu YK, Ye H, Wang RY et al (2023) CircNFIX stimulates the proliferation, invasion, and stemness properties of ovarian cancer cells by enhancing SH3RF3 mRNA stability via binding LIN28B. Kaohsiung J Med Sci 39(3):234–243

    Article  CAS  PubMed  Google Scholar 

  34. Tziomalos K, Athyros VG (2015) Diabetic nephropathy: new risk factors and improvements in diagnosis. Rev Diabet Stud 12(1–2):110–118

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hua F (2020) New insights into diabetes mellitus and its complications: a narrative review. Ann Transl Med 8(24):1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149(7):1635–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Engin F, Hotamisligil GS (2010) Restoring endoplasmic reticulum function by chemical chaperones: an emerging therapeutic approach for metabolic diseases. Diabetes Obes Metab 12(Suppl 2):108–115

    Article  CAS  PubMed  Google Scholar 

  38. Ju Y, Su Y, Chen Q, Ma K, Ji T, Wang Z et al (2019) Protective effects of astragaloside IV on endoplasmic reticulum stress-induced renal tubular epithelial cells apoptosis in type 2 diabetic nephropathy rats. Biomed Pharmacother 109:84–92

    Article  CAS  PubMed  Google Scholar 

  39. Huang S, Xu Y, Ge X, Xu B, Peng W, Jiang X et al (2019) Long noncoding RNA NEAT1 accelerates the proliferation and fibrosis in diabetic nephropathy through activating Akt/mTOR signaling pathway. J Cell Physiol 234(7):11200–11207

    Article  CAS  PubMed  Google Scholar 

  40. Zhang J, Jiang T, Liang X, Shu S, Xiang X, Zhang W et al (2019) lncRNA MALAT1 mediated high glucose-induced HK-2 cell epithelial-to-mesenchymal transition and injury. J Physiol Biochem 75(4):443–452

    Article  CAS  PubMed  Google Scholar 

  41. Pereira B, Billaud M, Almeida R (2017) RNA-binding proteins in cancer: old players and new actors. Trends Cancer 3(7):506–528

    Article  CAS  PubMed  Google Scholar 

  42. Liu Z, Bian M, Pang L (2023) LncRNA CRNDE binds hnRNPA1 to facilitate carbon monoxide poisoning-induced delayed encephalopathy via inhibiting UCHL5-mediated SMO deubiquitination. Metab Brain Dis 38(3):1097–1113

    Article  CAS  PubMed  Google Scholar 

  43. Tao W, Ma J, Zheng J, Liu X, Liu Y, Ruan X et al (2020) Silencing SCAMP1-TV2 inhibited the malignant biological behaviors of breast cancer cells by interaction with PUM2 to facilitate INSM1 mRNA degradation. Front Oncol 10:613

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zou H, Luo J, Guo Y, Liu Y, Wang Y, Deng L et al (2022) RNA-binding protein complex LIN28/MSI2 enhances cancer stem cell-like properties by modulating Hippo-YAP1 signaling and independently of Let-7. Oncogene 41(11):1657–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qin H, Li W, Sun Y, Bao Y, Sun L, Song Z et al (2018) 20(S)-25-methoxyl-dammarane-3β,12β,20-triol attenuates endoplasmic reticulum stress via ERK/MAPK signaling pathway. Eur J Pharmacol 836:75–82

    Article  CAS  PubMed  Google Scholar 

  46. Toyoda M, Suzuki D, Honma M, Uehara G, Sakai T, Umezono T et al (2004) High expression of PKC-MAPK pathway mRNAs correlates with glomerular lesions in human diabetic nephropathy. Kidney Int 66(3):1107–1114

    Article  CAS  PubMed  Google Scholar 

  47. Zhang J, Jing S, Zhang H, Zhang J, Xie H, Feng L (2022) Low-dose aspirin prevents LPS-induced preeclampsia-like phenotype via AQP-1 and the MAPK/ERK 1/2 pathway. Placenta 121:61–69

    Article  CAS  PubMed  Google Scholar 

  48. Salama AAA, Elgohary R, Fahmy MI (2023) Protocatechuic acid ameliorates lipopolysaccharide-induced kidney damage in mice via downregulation of TLR-4-mediated IKBKB/NF-kappaB and MAPK/Erk signaling pathways. J Appl Toxicol. https://doi.org/10.1002/jat.4447

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments.

Funding

This work was supported by Shandong Provincial Medical and Health Development Project (No. 202103060284) and the Research Fund for Academician Lin He New Medicine (No. JYHL2019FMS11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqiang Wang.

Ethics declarations

Conflict of interest

All authors agree with the presented findings, have contributed to the work, and declare no conflict of interest.

Ethical approval

The animal studies were approved by the Animal Care and Use Committee of the Affiliated Hospital of Jining Medical University (JNMC-2020-DW-FY-041).

Informed consent disclosure

Not Applicable.

Additional information

This article belongs to the Topical Collection "Diabetic Nephropathy", managed by Giuseppe Pugliese.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

592_2023_2145_MOESM1_ESM.tif

Figure S1. HG induced HK2 cell apoptosis and ERS. HK2 cells were subjected to HG (15, 30 and 45 mM) for 24 h. HK-2 cell viability (A) and proliferation (B) were examined by MTT assay and EdU assay, respectively. C Flow cytometry was performed to examine HK2 cell apoptosis. D, E Bax, cleaved-caspase-3, Bcl-2, GRP78, CHOP and caspase12 protein levels were analyzed by western blot. The measurement data were presented as mean  ±  SD. All data was obtained from at least three replicate experiments. *p < 0.05, **p < 0.01, ***p < 0.001 (TIF 2815 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Zhang, Z., Zheng, D. et al. METTL14 promotes the development of diabetic kidney disease by regulating m6A modification of TUG1. Acta Diabetol 60, 1567–1580 (2023). https://doi.org/10.1007/s00592-023-02145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-023-02145-5

Keywords

Navigation