Skip to main content

Advertisement

Log in

TMBIM6 promotes diabetic tubular epithelial cell survival and albumin endocytosis by inhibiting the endoplasmic reticulum stress sensor, IRE1α

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Aim

Reduced albumin reabsorption in proximal tubular epithelial cells (PTECs), resulting from decreased megalin plasma membrane (PM) localization due to prolonged endoplasmic reticulum (ER) stress, potentially contributes to albuminuria in early diabetic kidney disease (DKD). To examine this possibility, we investigated the cytoprotective effect of TMBIM6 in promoting diabetic PTEC survival and albumin endocytosis by attenuating ER stress with an IRE1α inhibitor, KIRA6.

Methods and results

Renal TMBIM6 distribution and expression were determined by immunohistochemistry, western blotting, and qPCR, whereas tubular injury was evaluated in db/db mice. High-glucose (HG)-treated HK-2 cells were either treated with KIRA6 or transduced with a lentiviral vector for TMBIM6 overexpression. ER stress was measured by western blotting and ER-Tracker Red staining, whereas apoptosis was determined by performing TUNEL assays. Megalin expression was measured by immunofluorescence, and albumin endocytosis was evaluated after incubating cells with FITC-labeled albumin. Tubular injury and TMBIM6 downregulation occurred in db/db mouse renal cortical tissues. Both KIRA6 treatment and TMBIM6 overexpression inhibited ER stress by decreasing the levels of phosphorylated IRE1α, XBP1s, GRP78, and CHOP, and stabilizing ER expansion in HG-treated HK-2 cells. TUNEL assays performed with KIRA6-treated or TMBIM6-overexpressing cells showed a significant decrease in apoptosis, consistent with the significant downregulation of BAX and upregulation of BCL-2, as measured by immunoblotting. Both KIRA6 and TMBIM6 overexpression promoted megalin PM localization and restored albumin endocytosis in HG-treated HK-2 cells.

Conclusion

TMBIM6 promoted diabetic PTEC survival and albumin endocytosis by negatively regulating the IRE1α branch of ER stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. International Diabetes Federation (2019) IDF Diabetes Atlas, 9th edn. Available at: https://wwwdiabetesatlasorg.

  2. Alicic RZ, Rooney MT, Tuttle KR (2017) Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin J Am Soc Nephrol 12(12):2032–2045. doi:https://doi.org/10.2215/cjn.11491116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levey AS, Gansevoort RT, Coresh J et al (2020) Change in Albuminuria and GFR as End Points for Clinical Trials in Early Stages of CKD: A Scientific Workshop Sponsored by the National Kidney Foundation in Collaboration With the US Food and Drug Administration and European Medicines Agency. Am J Kidney Dis 75(1):84–104. doi:https://doi.org/10.1053/j.ajkd.2019.06.009

    Article  CAS  PubMed  Google Scholar 

  4. Figueira MF, Castiglione RC, de Lemos Barbosa CM et al (2017) Diabetic rats present higher urinary loss of proteins and lower renal expression of megalin, cubilin, ClC-5, and CFTR. Physiol Rep 5(13). doi:https://doi.org/10.14814/phy2.13335

  5. Russo LM, Sandoval RM, Campos SB, Molitoris BA, Comper WD, Brown D (2009) Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J Am Soc Nephrol 20(3):489–494. doi:https://doi.org/10.1681/asn.2008050503

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dickson LE, Wagner MC, Sandoval RM, Molitoris BA (2014) The proximal tubule and albuminuria: really! J Am Soc Nephrol 25(3):443–453. doi:https://doi.org/10.1681/asn.2013090950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou L, Liu F, Huang XR et al (2011) Amelioration of albuminuria in ROCK1 knockout mice with streptozotocin-induced diabetic kidney disease. Am J Nephrol 34(5):468–475. doi:https://doi.org/10.1159/000332040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tojo A, Onozato ML, Kurihara H, Sakai T, Goto A, Fujita T (2003) Angiotensin II blockade restores albumin reabsorption in the proximal tubules of diabetic rats. Hypertens Res 26(5):413–419. doi:https://doi.org/10.1291/hypres.26.413

    Article  CAS  PubMed  Google Scholar 

  9. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529. doi:https://doi.org/10.1038/nrm2199

    Article  CAS  PubMed  Google Scholar 

  10. Cunard R (2015) Endoplasmic Reticulum Stress in the Diabetic Kidney, the Good, the Bad and the Ugly. J Clin Med 4(4):715–740. doi:https://doi.org/10.3390/jcm4040715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhuang A, Forbes JM (2014) Stress in the kidney is the road to pERdition: is endoplasmic reticulum stress a pathogenic mediator of diabetic nephropathy? J Endocrinol 222(3):R97–111. doi:https://doi.org/10.1530/joe-13-0517

    Article  CAS  PubMed  Google Scholar 

  12. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102. doi:https://doi.org/10.1038/nrm3270

    Article  CAS  PubMed  Google Scholar 

  13. Inagi R, Ishimoto Y, Nangaku M (2014) Proteostasis in endoplasmic reticulum–new mechanisms in kidney disease. Nat Rev Nephrol 10(7):369–378. doi:https://doi.org/10.1038/nrneph.2014.67

    Article  CAS  PubMed  Google Scholar 

  14. Huang Y, Sun Y, Cao Y et al (2017) HRD1 prevents apoptosis in renal tubular epithelial cells by mediating eIF2α ubiquitylation and degradation. Cell Death Dis 8(12):3202. doi:https://doi.org/10.1038/s41419-017-0002-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mohammed-Ali Z, Lu C, Marway MK et al (2017) Endoplasmic reticulum stress inhibition attenuates hypertensive chronic kidney disease through reduction in proteinuria. Sci Rep 7:41572. doi:https://doi.org/10.1038/srep41572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lebeaupin C, Blanc M, Vallée D, Keller H, Bailly-Maitre B (2020) BAX inhibitor-1: between stress and survival. Febs j 287(9):1722–1736. doi:https://doi.org/10.1111/febs.15179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lisbona F, Rojas-Rivera D, Thielen P et al (2009) BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1alpha. Mol Cell 33(6):679–691. doi:https://doi.org/10.1016/j.molcel.2009.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bailly-Maitre B, Belgardt BF, Jordan SD et al (2010) Hepatic Bax inhibitor-1 inhibits IRE1alpha and protects from obesity-associated insulin resistance and glucose intolerance. J Biol Chem 285(9):6198–6207. doi:https://doi.org/10.1074/jbc.M109.056648

    Article  CAS  PubMed  Google Scholar 

  19. Wang J, Zhu P, Li R, Ren J, Zhang Y, Zhou H(2020) Bax inhibitor 1 preserves mitochondrial homeostasis in acute kidney injury through promoting mitochondrial retention of PHB2. Theranostics. 10(1):384–397. doi:https://doi.org/10.7150/thno.40098

  20. Yadav RK, Lee GH, Lee HY et al (2015) TMBIM6 (transmembrane BAX inhibitor motif containing 6) enhances autophagy and reduces renal dysfunction in a cyclosporine A-induced nephrotoxicity model. Autophagy 11(10):1760–1774. doi:https://doi.org/10.1080/15548627.2015.1082021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang X, Zhao L, Ajay AK, Jiao B, Zhang X, Wang C, Gao X, Yuan Z, Liu H, Liu WJ (2019) QiDiTangShen Granules Activate Renal Nutrient-Sensing Associated Autophagy in db/db Mice. Front Physiol 10:1224. doi:https://doi.org/10.3389/fphys.2019.01224

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhao TT, Zhang HJ, Lu XG et al (2014) Chaihuang-Yishen granule inhibits diabetic kidney disease in rats through blocking TGF-β/Smad3 signaling. PLoS ONE 9(3):e90807. doi:https://doi.org/10.1371/journal.pone.0090807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marquardt A, Al-Dabet MM, Ghosh S et al (2017) Farnesoid X Receptor Agonism Protects against Diabetic Tubulopathy: Potential Add-On Therapy for Diabetic Nephropathy. J Am Soc Nephrol 28(11):3182–3189. doi:https://doi.org/10.1681/asn.2016101123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peruchetti DB, Silva-Aguiar RP, Siqueira GM, Dias WB, Caruso-Neves C (2018) High glucose reduces megalin-mediated albumin endocytosis in renal proximal tubule cells through protein kinase B O-GlcNAcylation. J Biol Chem 293(29):11388–11400. doi:https://doi.org/10.1074/jbc.RA117.001337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Durán M, Burballa C, Cantero-Recasens G et al (2021) Novel Dent disease 1 cellular models reveal biological processes underlying ClC-5 loss-of-function. Hum Mol Genet 30(15):1413–1428. doi:https://doi.org/10.1093/hmg/ddab131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shu S, Wang H, Zhu J et al (2021) Reciprocal regulation between ER stress and autophagy in renal tubular fibrosis and apoptosis. Cell Death Dis 12(11):1016. doi:https://doi.org/10.1038/s41419-021-04274-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chou X, Ma K, Shen Y, Min Z, Wu Q, Sun D (2021) Dual role of inositol-requiring enzyme 1α (IRE-1α) in Cd-induced apoptosis in human renal tubular epithelial cells: Endoplasmic reticulum stress and STAT3 signaling activation. Toxicology 456:152769. doi:https://doi.org/10.1016/j.tox.2021.152769

    Article  CAS  PubMed  Google Scholar 

  28. Chen X, Han Y, Gao P et al (2019) Disulfide-bond A oxidoreductase-like protein protects against ectopic fat deposition and lipid-related kidney damage in diabetic nephropathy. Kidney Int 95(4):880–895. doi:https://doi.org/10.1016/j.kint.2018.10.038

    Article  CAS  PubMed  Google Scholar 

  29. Qu X, Zhai B, Liu Y et al (2022) Pyrroloquinoline quinone ameliorates renal fibrosis in diabetic nephropathy by inhibiting the pyroptosis pathway in C57BL/6 mice and human kidney 2 cells. Biomed Pharmacother 150:112998. doi:https://doi.org/10.1016/j.biopha.2022.112998

    Article  CAS  PubMed  Google Scholar 

  30. Ni L, Yuan C, Wu X(2021) Endoplasmic Reticulum Stress in Diabetic Nephrology: Regulation, Pathological Role, and Therapeutic Potential. Oxid Med Cell Longev. 2021:7277966. doi:https://doi.org/10.1155/2021/7277966

  31. Jiang WJ, Xu CT, Du CL et al (2022) Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy. Theranostics 12(1):324–339. doi:https://doi.org/10.7150/thno.63735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qiu D, Song S, Wang Y et al (2022) NAD(P)H: quinone oxidoreductase 1 attenuates oxidative stress and apoptosis by regulating Sirt1 in diabetic nephropathy. J Transl Med 20(1):44. doi:https://doi.org/10.1186/s12967-021-03197-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ishikawa T, Watanabe N, Nagano M, Kawai-Yamada M, Lam E (2011) Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor. Cell Death Differ 18(8):1271–1278. doi:https://doi.org/10.1038/cdd.2011.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ren J, Bi Y, Sowers JR, Hetz C, Zhang Y (2021) Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 18(7):499–521. doi:https://doi.org/10.1038/s41569-021-00511-w

    Article  PubMed  Google Scholar 

  35. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184–190. doi:https://doi.org/10.1038/ncb0311-184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang S, Wang Z, Fan Q et al (2016) Ginkgolide K protects the heart against endoplasmic reticulum stress injury by activating the inositol-requiring enzyme 1α/X box-binding protein-1 pathway. Br J Pharmacol 173(15):2402–2418. doi:https://doi.org/10.1111/bph.13516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu L, Wang Q, Guo F et al (2021) Involvement of miR-27a-3p in diabetic nephropathy via affecting renal fibrosis, mitochondrial dysfunction, and endoplasmic reticulum stress. J Cell Physiol 236(2):1454–1468. doi:https://doi.org/10.1002/jcp.29951

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Zhang DQ, Wang X et al (2022) Irisin alleviates high glucose-induced hypertrophy in H9c2 cardiomyoblasts by inhibiting endoplasmic reticulum stress. Peptides 152:170774. doi:https://doi.org/10.1016/j.peptides.2022.170774

    Article  CAS  PubMed  Google Scholar 

  39. Zhang X, Zhou C, Miao L et al(2021) Panax Notoginseng Protects against Diabetes-Associated Endothelial Dysfunction: Comparison between Ethanolic Extract and Total Saponin. Oxid Med Cell Longev. 2021:4722797. doi:https://doi.org/10.1155/2021/4722797

  40. Bailly-Maitre B, Fondevila C, Kaldas F et al (2006) Cytoprotective gene bi-1 is required for intrinsic protection from endoplasmic reticulum stress and ischemia-reperfusion injury. Proc Natl Acad Sci U S A 103(8):2809–2814. doi:https://doi.org/10.1073/pnas.0506854103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang J, Zhang J, Ni H et al (2021) Downregulation of XBP1 protects kidney against ischemia-reperfusion injury via suppressing HRD1-mediated NRF2 ubiquitylation. Cell Death Discov 7(1):44. doi:https://doi.org/10.1038/s41420-021-00425-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hetz C, Bernasconi P, Fisher J et al (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312(5773):572–576. doi:https://doi.org/10.1126/science.1123480

    Article  CAS  PubMed  Google Scholar 

  43. Rong J, Chen L, Toth JI, Tcherpakov M, Petroski MD, Reed JC (2011) Bifunctional apoptosis regulator (BAR), an endoplasmic reticulum (ER)-associated E3 ubiquitin ligase, modulates BI-1 protein stability and function in ER Stress. J Biol Chem 286(2):1453–1463. doi:https://doi.org/10.1074/jbc.M110.175232

    Article  CAS  PubMed  Google Scholar 

  44. Isbat M, Zeba N, Kim SR, Hong CB (2009) A BAX inhibitor-1 gene in Capsicum annuum is induced under various abiotic stresses and endows multi-tolerance in transgenic tobacco. J Plant Physiol 166(15):1685–1693. doi:https://doi.org/10.1016/j.jplph.2009.04.017

    Article  CAS  PubMed  Google Scholar 

  45. Feldman HC, Tong M, Wang L et al (2016) Structural and Functional Analysis of the Allosteric Inhibition of IRE1α with ATP-Competitive Ligands. ACS Chem Biol 11(8):2195–2205. doi:https://doi.org/10.1021/acschembio.5b00940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ghosh R, Wang L, Wang ES et al (2014) Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress. Cell 158(3):534–548. doi:https://doi.org/10.1016/j.cell.2014.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gekle M (2005) Renal tubule albumin transport. Annu Rev Physiol 67:573–594. doi:https://doi.org/10.1146/annurev.physiol.67.031103.154845

    Article  CAS  PubMed  Google Scholar 

  48. Teixeira DE, Peruchetti DB, Souza MC, das Graças Henriques MG, Pinheiro AAS, Caruso-Neves C (2020) A high salt diet induces tubular damage associated with a pro-inflammatory and pro-fibrotic response in a hypertension-independent manner. Biochim Biophys Acta Mol Basis Dis 1866(11):165907. doi:https://doi.org/10.1016/j.bbadis.2020.165907

    Article  CAS  PubMed  Google Scholar 

  49. D’Amico G, Bazzi C (2003) Pathophysiology of proteinuria. Kidney Int 63(3):809–825. doi:https://doi.org/10.1046/j.1523-1755.2003.00840.x

    Article  PubMed  Google Scholar 

  50. Gekle M, Mildenberger S, Freudinger R, Silbernagl S (1998) Long-term protein exposure reduces albumin binding and uptake in proximal tubule-derived opossum kidney cells. J Am Soc Nephrol 9(6):960–968. doi:https://doi.org/10.1681/asn.V96960

    Article  CAS  PubMed  Google Scholar 

  51. Caruso-Neves C, Pinheiro AA, Cai H, Souza-Menezes J, Guggino WB (2006) PKB and megalin determine the survival or death of renal proximal tubule cells. Proc Natl Acad Sci U S A 103(49):18810–18815. doi:https://doi.org/10.1073/pnas.0605029103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Osoro EK, Du X, Liang D et al (2021) Induction of PDCD4 by albumin in proximal tubule epithelial cells potentiates proteinuria-induced dysfunctional autophagy by negatively targeting Atg5. Biochem Cell Biol 99(5):617–628. doi:https://doi.org/10.1139/bcb-2021-0028

    Article  CAS  PubMed  Google Scholar 

  53. Li X, Zou T, Wang S et al (2021) Mechanism and restoration strategy of lysosomal abnormalities induced by urinary protein overload in proximal tubule epithelial cells. Dev Dyn 250(7):943–954. doi:https://doi.org/10.1002/dvdy.297

    Article  CAS  PubMed  Google Scholar 

  54. Morigi M, Macconi D, Zoja C et al (2002) Protein overload-induced NF-kappaB activation in proximal tubular cells requires H(2)O(2) through a PKC-dependent pathway. J Am Soc Nephrol 13(5):1179–1189

    CAS  PubMed  Google Scholar 

  55. Kawanami D, Matoba K, Takeda Y et al (2017) SGLT2 Inhibitors as a Therapeutic Option for Diabetic Nephropathy. Int J Mol Sci 18(5). doi:https://doi.org/10.3390/ijms18051083

  56. Abdel-Rafei MK, Thabet NM, Rashed LA, Moustafa EM (2021) Canagliflozin, a SGLT-2 inhibitor, relieves ER stress, modulates autophagy and induces apoptosis in irradiated HepG2 cells: Signal transduction between PI3K/AKT/GSK-3β/mTOR and Wnt/β-catenin pathways; in vitro. J Cancer Res Ther 17(6):1404–1418. doi:https://doi.org/10.4103/jcrt.JCRT_963_19

    Article  CAS  PubMed  Google Scholar 

  57. Gravotta D, Perez Bay A, Jonker CTH et al (2019) Clathrin and clathrin adaptor AP-1 control apical trafficking of megalin in the biosynthetic and recycling routes. Mol Biol Cell 30(14):1716–1728. doi:https://doi.org/10.1091/mbc.E18-12-0811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen J, Wu H, Tang X, Chen L (2022) 4-Phenylbutyrate protects against rifampin-induced liver injury via regulating MRP2 ubiquitination through inhibiting endoplasmic reticulum stress. Bioengineered 13(2):2866–2877. doi:https://doi.org/10.1080/21655979.2021.2024970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We extend special thanks to Dr. Wei Huili for inspiring this study and for her patience and timely help during the study.

Funding

This study was funded by National Natural Science Foundation of China (grant numbers 81774273 and 82004275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfang Liu.

Ethics declarations

Conflict of interest

The authors report no conflict interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Shi, Y., Zhou, Y. et al. TMBIM6 promotes diabetic tubular epithelial cell survival and albumin endocytosis by inhibiting the endoplasmic reticulum stress sensor, IRE1α. Mol Biol Rep 49, 9181–9194 (2022). https://doi.org/10.1007/s11033-022-07744-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07744-z

Keywords

Navigation