Skip to main content
Log in

The potential mechanism of Liu–Wei–Di–Huang Pills in treatment of type 2 diabetic mellitus: from gut microbiota to short-chain fatty acids metabolism

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Background

Type 2 diabetes mellitus (T2DM) has already become a global pandemic. Recently, reports showed its pathogenesis was closely related to a disorder of gut microbiota. In China, the Liu–Wei–Di–Huang Pills (LWDH) have treated T2DM for thousands of years. However, its therapeutic mechanism associated with gut microbiota is worthy of further study.

Aims

This study aims to investigate the effects of LWDH on T2DM by regulating gut microbiota and short-chain fatty acids (SCFAs) in Goto–Kakizaki (GK) rats.

Methods

T2DM models were successfully established based on GK rats and administrated with LWDH. The changes in fasting blood glucose (FBG), oral glucose tolerance test (OGTT), and serum insulin (INS) were determined, and the immunohistochemical (IHC) method was used to test INS expression in pancreas. The 16S-ribosomal DNA (16S rDNA) sequencing analysis assessed gut microbiota structural changes; a gas chromatography–mass spectrometer (GC–MS)-based metabolomics method was adopted to detect SCFA levels. The pathological morphology of jejunum was detected by hematoxylin–eosin (H&E) staining, and the expression of GPR43, GPR41, GLP-1, and GLP-1R was evaluated by qRT-PCR and ELISA, respectively.

Results

We observed that GK rats treated with LWDH: (a) has altered the microbial structure and promoted the abundance of bacteria in Firmicutes, including Lactobacillus, Allobaculum, and Ruminococcus_2, (b) increased SCFAs levels involving acetic acid, propionic acid, and butyric acid and (c) alleviated T2DM and jejunum injuries potentially based on SCFAs-GPR43/41-GLP-1 pathway.

Conclusion

LWDH could improve T2DM by regulating gut microbiota and SCFAs, and the therapeutic mechanism might be related to the SCFAs-GPR43/41-GLP-1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

Abbreviations

T2DM:

Type 2 diabetes mellitus

LWDH:

Liu–Wei–Di–Huang Pills

SCFAs:

Short-chain fatty acids

GK:

Goto–Kakizaki

FBG:

Fasting blood glucose

OGTT:

Oral glucose tolerance test

INS:

Serum insulin

IHC:

Immunohistochemical

16S rDNA:

The16S-ribosomal DNA

GC–MS:

A gas chromatography–mass spectrometer

H&E:

Hematoxylin-eosin

GLP-1:

Glucagon-like peptide-1

GLP-1R:

Glucagon-like peptide-1 receptor

GPCRs:

G-protein-coupled receptors

GPR43:

G-protein-coupled receptors 43

GPR41:

G-protein-coupled receptors 41

TCM:

Traditional Chinese medicine

MOD:

Model group

POS:

Positive group

CON:

Control group

AOD:

Average optical density

PCoA:

Principal coordinates analysis

NMDS:

Non-metric multidimensional scaling

LDA:

Linear discriminant analysis

LEfSe:

Linear discriminant analysis effect size

DC:

Degree

BC:

Betweenness centrality

CC:

Closeness centrality

PICRUSt 2.0:

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States Ver2.0

References

  1. Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14(2):88–98

    Article  PubMed  Google Scholar 

  2. Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772

    Article  CAS  PubMed  Google Scholar 

  3. Horie M, Miura T, Hirakata S et al (2017) Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice. Exp Anim 66(4):405–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60

    Article  CAS  PubMed  Google Scholar 

  5. Adeshirlarijaney A, Gewirtz AT (2020) Considering gut microbiota in treatment of type 2 diabetes mellitus. Gut Microbes 11(3):253–264

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gong X, Li X, Bo A et al (2020) The interactions between gut microbiota and bioactive ingredients of traditional Chinese medicines: a review. Pharmacol Res 157:104824

    Article  CAS  PubMed  Google Scholar 

  7. Feng W, Ao H, Peng C, Yan D (2019) Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol Res 142:176–191

    Article  CAS  PubMed  Google Scholar 

  8. Gao K, Yang R, Zhang J et al (2018) Effects of Qijian mixture on type 2 diabetes assessed by metabonomics, gut microbiota and network pharmacology. Pharmacol Res 130:93–109

    Article  PubMed  Google Scholar 

  9. Guo C, Wang Y, Zhang S et al (2021) Crataegus pinnatifida polysaccharide alleviates colitis via modulation of gut microbiota and SCFAs metabolism. Int J Biol Macromol 181:357–368

    Article  CAS  PubMed  Google Scholar 

  10. Zeng J, Cheng B, Huang Y et al (2019) Active Fraction Combination from Liuwei Dihuang Decoction (LW-AFC) alleviated the LPS-induced long-term potentiation impairment and glial cells activation in hippocampus of mice by modulating immune responses. Evid Based Complement Alternat Med 2019:3040972

    PubMed  PubMed Central  Google Scholar 

  11. Tseng YT, Chang WH, Lin CC et al (2019) Protective effects of Liuwei dihuang water extracts on diabetic muscle atrophy. Phytomedicine 53:96–106

    Article  PubMed  Google Scholar 

  12. Huang JH, He D, Chen L et al (2020) A GC–MS-based metabolomics investigation of the protective effect of Liu–Wei–Di–Huang–Wan in type 2 diabetes mellitus mice. Int J Anal Chem 2020:1306439

    PubMed  PubMed Central  Google Scholar 

  13. Canfora EE, Meex RCR, Venema K, Blaak EE (2019) Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol 15(5):261–273

    Article  CAS  PubMed  Google Scholar 

  14. Parada Venegas D, De la Fuente MK, Landskron G et al (2019) Short Chain Fatty Acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Mandaliya DK, Seshadri S (2019) Short chain fatty acids, pancreatic dysfunction and type 2 diabetes. Pancreatology 19(2):280–284

    Article  CAS  PubMed  Google Scholar 

  16. Michalowska J, Miller-Kasprzak E, Bogdanski P (2021) Incretin hormones in obesity and related cardiometabolic disorders: the clinical perspective. Nutrients 13(2):66

    Article  CAS  Google Scholar 

  17. Gribble FM, Reimann F (2021) Metabolic messengers: glucagon-like peptide 1. Nat Metab 3(2):142–148

    Article  CAS  PubMed  Google Scholar 

  18. Miguens-Gomez A, Casanova-Marti A, Blay MT et al (2021) Glucagon-like peptide-1 regulation by food proteins and protein hydrolysates. Nutr Res Rev 34(2):259–275

    Article  CAS  PubMed  Google Scholar 

  19. Tolhurst G, Heffron H, Lam YS et al (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61(2):364–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang JH, He D, Chen L et al (2020) A GC–MS-based metabolomics investigation of the protective effect of Liu–Wei–Di–Huang–Wan in type 2 diabetes mellitus mice. Int J Anal Chem 2020:1306439

    PubMed  PubMed Central  Google Scholar 

  21. Peng W, Huang J, Yang J et al (2019) Integrated 16S rRNA sequencing, metagenomics, and metabolomics to characterize gut microbial composition, function, and fecal metabolic phenotype in non-obese type 2 diabetic Goto–Kakizaki rats. Front Microbiol 10:3141

    Article  PubMed  Google Scholar 

  22. Estaki M, Jiang L, Bokulich NA et al (2020) QIIME 2 enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with publicly available data. Curr Protoc Bioinform 70(1):e100

    Article  Google Scholar 

  23. Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60

    Article  PubMed  PubMed Central  Google Scholar 

  24. Douglas GM, Maffei VJ, Zaneveld JR et al (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38(6):685–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Caspi R, Billington R, Keseler IM et al (2020) The MetaCyc database of metabolic pathways and enzymes—a 2019 update. Nucleic Acids Res 48(D1):D445–D453

    Article  CAS  PubMed  Google Scholar 

  26. Magliano DJ, Sacre JW, Harding JL et al (2020) Young-onset type 2 diabetes mellitus—implications for morbidity and mortality. Nat Rev Endocrinol 16(6):321–331

    Article  PubMed  Google Scholar 

  27. Sebastian Domingo JJ, Sanchez SC (2018) From the intestinal flora to the microbiome. Rev Esp Enferm Dig 110(1):51–56

    CAS  PubMed  Google Scholar 

  28. Perreault L, Skyler JS, Rosenstock J (2021) Novel therapies with precision mechanisms for type 2 diabetes mellitus. Nat Rev Endocrinol 17(6):364–377

    Article  PubMed  CAS  Google Scholar 

  29. Xu L, Li Y, Dai Y, Peng J (2018) Natural products for the treatment of type 2 diabetes mellitus: pharmacology and mechanisms. Pharmacol Res 130:451–465

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Ma Q, Li Y et al (2020) Research progress on Traditional Chinese Medicine syndromes of diabetes mellitus. Biomed Pharmacother 121:109565

    Article  CAS  PubMed  Google Scholar 

  31. Guest PC (2019) Characterization of the Goto–Kakizaki (GK) rat model of type 2 diabetes. Methods Mol Biol 1916:203–211

    Article  CAS  PubMed  Google Scholar 

  32. Dai B, Wu Q, Zeng C et al (2016) The effect of Liuwei Dihuang decoction on PI3K/Akt signaling pathway in liver of type 2 diabetes mellitus (T2DM) rats with insulin resistance. J Ethnopharmacol 192:382–389

    Article  PubMed  Google Scholar 

  33. Giongo A, Gano KA, Crabb DB et al (2011) Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5(1):82–91

    Article  CAS  PubMed  Google Scholar 

  34. Yan F, Li N, Shi J et al (2019) Lactobacillus acidophilus alleviates type 2 diabetes by regulating hepatic glucose, lipid metabolism and gut microbiota in mice. Food Funct 10(9):5804–5815

    Article  CAS  PubMed  Google Scholar 

  35. Vallianou NG, Stratigou T, Tsagarakis S (2018) Microbiome and diabetes: Where are we now? Diabetes Res Clin Pract 146:111–118

    Article  CAS  PubMed  Google Scholar 

  36. Horton F, Wright J, Smith L, Hinton PJ, Robertson MD (2014) Increased intestinal permeability to oral chromium (51 Cr) -EDTA in human type 2 diabetes. Diabet Med 31(5):559–563

    Article  CAS  PubMed  Google Scholar 

  37. Ding S, Lund PK (2011) Role of intestinal inflammation as an early event in obesity and insulin resistance. Curr Opin Clin Nutr Metab Care 14(4):328–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Forslund K, Hildebrand F, Nielsen T et al (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528(7581):262–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao JD, Li Y, Sun M et al (2021) Effect of berberine on hyperglycaemia and gut microbiota composition in type 2 diabetic Goto-Kakizaki rats. World J Gastroenterol 27(8):708–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ren SM, Mei L, Huang H et al (2019) Correlation analysis of gut microbiota and biochemical indexes in patients with non-alcoholic fatty liver disease. Zhonghua Gan Zang Bing Za Zhi 27(5):369–375

    CAS  PubMed  Google Scholar 

  41. Pedersen HK, Gudmundsdottir V, Nielsen HB et al (2016) Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535(7612):376–381

    Article  CAS  PubMed  Google Scholar 

  42. Cani PD, de Vos WM (2017) Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol 8:1765

    Article  PubMed  PubMed Central  Google Scholar 

  43. Everard A, Belzer C, Geurts L et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110(22):9066–9071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhai Q, Feng S, Arjan N, Chen W (2019) A next generation probiotic, Akkermansia muciniphila. Crit Rev Food Sci Nutr 59(19):3227–3236

    Article  CAS  PubMed  Google Scholar 

  45. Gaspar P, Neves AR, Ramos A et al (2004) Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strains deficient in lactate dehydrogenase and the mannitol transport system. Appl Environ Microbiol 70(3):1466–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xie M, Chen HH, Nie SP, Yin JY, Xie MY (2017) Gamma-aminobutyric acid increases the production of short-chain fatty acids and decreases pH values in mouse colon. Molecules 22(4):66

    Google Scholar 

  47. Kim M, Qie Y, Park J, Kim CH (2016) Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 20(2):202–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Patra KC, Hay N (2014) The pentose phosphate pathway and cancer. Trends Biochem Sci 39(8):347–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Basen M, Kurrer SE (2021) A close look at pentose metabolism of gut bacteria. Febs J 288(6):1804–1808

    Article  CAS  PubMed  Google Scholar 

  50. Hernandez MAG, Canfora EE, Jocken JWE, Blaak EE (2019) The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 11(8):66

    Article  CAS  Google Scholar 

  51. Kim CH, Park J, Kim M (2014) Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw 14(6):277–288

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tedelind S, Westberg F, Kjerrulf M, Vidal A (2007) Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol 13(20):2826–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. O’Sullivan JF, Morningstar JE, Yang Q et al (2017) Dimethylguanidino valeric acid is a marker of liver fat and predicts diabetes. J Clin Invest 127(12):4394–4402

    Article  PubMed  PubMed Central  Google Scholar 

  54. Oh NS, Lee JY, Kim YT, Kim SH, Lee JH (2020) Cancer-protective effect of a synbiotic combination between Lactobacillus gasseri 505 and a Cudrania tricuspidata leaf extract on colitis-associated colorectal cancer. Gut Microbes 12(1):1785803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zheng F, Wang Z, Stanton C et al (2021) Lactobacillus rhamnosus FJSYC4-1 and Lactobacillus reuteri FGSZY33L6 alleviate metabolic syndrome via gut microbiota regulation. Food Funct 12(9):3919–3930

    Article  CAS  PubMed  Google Scholar 

  56. Yu L, Han X, Cen S et al (2020) Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota. Microbiol Res 233:126409

    Article  PubMed  Google Scholar 

  57. Ze X, Duncan SH, Louis P, Flint HJ (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6(8):1535–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mueller NT, Differding MK, Zhang M et al (2021) Metformin affects gut microbiome composition and function and circulating short-chain fatty acids: a randomized trial. Diabetes Care 44(7):1462–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nauck MA, Meier JJ (2018) Incretin hormones: their role in health and disease. Diabetes Obes Metab 20(Suppl 1):5–21

    Article  CAS  PubMed  Google Scholar 

  60. Stemmer K, Finan B, DiMarchi RD, Tschöp MH, Müller TD (2020) Insights into incretin-based therapies for treatment of diabetic dyslipidemia. Adv Drug Deliv Rev 159:34–53

    Article  CAS  PubMed  Google Scholar 

  61. Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ (2019) Role of the microbiome in human development. Gut 68(6):1108–1114

    Article  CAS  PubMed  Google Scholar 

  62. Hermes-Uliana C, Frez FCV, Sehaber CC et al (2018) Supplementation with l-glutathione improves oxidative status and reduces protein nitration in myenteric neurons in the jejunum in diabetic Rattus norvegicus. Exp Mol Pathol 104(3):227–234

    Article  CAS  PubMed  Google Scholar 

  63. Genser L, Aguanno D, Soula HA et al (2018) Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. J Pathol 246(2):217–230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No:2018YFC1704400); National Nature Science Foundation of China (No. 82074400, U21A20411); Natural Science Foundation of Hunan Province (2020JJ5325); Key Research and Development Project of Hunan Province Science and Technology (2020ZYQ038, 2020SK2029, 2020SK2101); Project of Changsha Technology Innovation Center (kh2004018); Training Program for Excellent Young Innovators of Changsha (kq1802017); Research Project of Traditional Chinese Medicine Bureau of Hunan Province (202092); Program of Survey of Chinese Medicines of China ([2017]66), Research on the Comprehensive Development and Utilization of Characteristic Traditional Chinese Medicine Resources (2060302). China Post-doctoral Science Foundation (2022M711131)

Author information

Authors and Affiliations

Authors

Contributions

DH, YW designed the experiments, supervised, and participated in the entire work. ZYY, LC were in charge of statistical analysis and wrote the manuscript and revised the manuscript. DZ maintained and performed animal studies. SHZ participated in study design and data collection. All the authors revised and approved the final manuscript.

Corresponding authors

Correspondence to Rong Yu or Jian-hua Huang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethics statement

The animal study was reviewed and approved by The Animal Ethical Committee of Hunan Academy of Chinese Medicine.

Research Involving Human and Animal Rights

Our study did not involve human studies.

Informed consent

Informed written consent was obtained from the participants before all the study procedures.

Additional information

Managed by Massimo Federici.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Zy., Chen, L., Wang, Y. et al. The potential mechanism of Liu–Wei–Di–Huang Pills in treatment of type 2 diabetic mellitus: from gut microbiota to short-chain fatty acids metabolism. Acta Diabetol 59, 1295–1308 (2022). https://doi.org/10.1007/s00592-022-01922-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-022-01922-y

Keywords

Navigation