Skip to main content

Advertisement

Log in

Scutellariae radix and coptidis rhizoma ameliorate glycolipid metabolism of type 2 diabetic rats by modulating gut microbiota and its metabolites

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Scutellariae radix (Scutellaria baicalensis Georgi, SR) and coptidis rhizoma (Coptis chinensis Franch, CR) are both widely used traditional Chinese medicines and have been used together to treat T2DM with synergistic effects in the clinical practices for thousands of years, but their combination mechanism is not clear. Accumulating evidences have implicated gut microbiota as important targets for the therapy of T2DM. Thus, this study aimed to unravel the cooperation mechanism of SR and CR on the amelioration of T2DM based on the systematic analysis of metagenome and metabolome of gut microbiota. Bacterial communities were analyzed based on high-throughput 16S rRNA gene sequencing. Furthermore, ultra high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS) was used to analyze variations of microbial metabolites in feces and the contents of short chain fatty acids (SCFAs) in the cecum were determined by a gaschromatography-flame ionization detector (GC-FID). 16S rRNA gene sequencing results revealed that T2DM rats treated with SR, CR, and the combination of SR and CR (SC) exhibited changes in the composition of the gut microbiota. The SCFAs-producing bacteria such as Bacteroidales S24-7 group_norank, [Eubacterium] nodatum group, Parasutterella, Prevotellaceae UCG-001, Ruminiclostridium, and Ruminiclostridium 9 in T2DM rats were notably enriched after treatment with SR, CR, and their combination. In contrast, secondary bile acid-producing bacteria such as Escherichia-Shigella strongly decreased in numbers. The perturbance of metabolic profiling in T2DM rats was obviously improved after treatment, exhibiting a lower level of secondary bile acids and a numerical increase of microbially derived SCFAs. Moreover, the correlation analysis illustrated a close relationship among gut microbiota, its metabolites, and T2DM-related indexes. The findings indicated that the crosstalk between microbiota-derived metabolites and the host played an important role in the progress of T2DM and might provide a novel insight regarding gut microbiota and its metabolites as potential new targets of traditional Chinese medicines. Furthermore, this work also suggested that the integration of various omics methods and bioinformatics made a useful template for drug mechanism research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alzahrani SH, Bakarman MA, Alqahtani SM, Alqahtani MS, Butt NS, Salawati EM, Alkatheri A, Malik AA, Saad K (2018) Awareness of diabetic retinopathy among people with diabetes in Jeddah, Saudi Arabia. Ther Adv Endocrinol Metab 9:103–112

    PubMed  PubMed Central  Google Scholar 

  • Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, Flint HJ (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66:1654–1661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bekele AZ, Koike S, Kobayashi Y (2010) Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis. FEMS Microbiol Lett 305:49–57

    CAS  PubMed  Google Scholar 

  • Bonnet F, Scheen A (2017) Understanding and overcoming metformin gastrointestinal intolerance. Diabetes Obes Metab 19:473–481

    CAS  PubMed  Google Scholar 

  • Chatterjee S, Khunti K, Davies MJ (2017) Type 2 diabetes. Lancet 389:2239–2251

    CAS  PubMed  Google Scholar 

  • Cheng K, Gao RY, Yan XB, Huang LS, Qin HL (2018) Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition 60:175–184

    Google Scholar 

  • Cheungpasitporn W, Thongprayoon C, Vijayvargiya P, Anthanont P, Erickson SB (2016) The risk for new-onset diabetes mellitus after kidney transplantation in patients with autosomal dominant polycystic kidney disease: a systematic review and meta-analysis. Can J Diabetes 40:521–528

    PubMed  Google Scholar 

  • Cox MA, Jackson J, Stanton M, Rojas-Triana A, Bober L, Laverty M, Yang X, Zhu F, Liu J, Wang S, Monsma F, Vassileva G, Maguire M, Gustafson E, Bayne M, Chou CC, Lundell D, Jenh CH (2009) Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E2 and cytokines. World J Gastroenterol 15:5549–5557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui X, Qian DW, Jiang S, Shang EX, Zhu ZH, Duan JA (2018) Scutellariae radix and coptidis rhizoma improve glucose and lipid metabolism in T2DM rats via regulation of the metabolic profiling and MAPK/PI3K/Akt signaling pathway. Int J Mol Sci 19:E3634

    PubMed  Google Scholar 

  • Deng Z, Li Z, Sun C, Xie H, Chen Z, Liu J, Wang H, Zhang C, Wang G (2018) The association between inflammation, the microbiome and urethane-induced pulmonary adenocarcinoma. Oncol Lett 15:6352–6360

    PubMed  PubMed Central  Google Scholar 

  • Gu Y, Wang X, Li J, Zhang Y, Zhong H, Liu R, Zhang D, Feng Q, Xie X, Hong J, Ren H, Liu W, Ma J, Su Q, Zhang H, Yang J, Wang X, Zhao X, Gu W, Bi Y, Peng Y, Xu X, Xia H, Li F, Xu X, Yang H, Xu G, Madsen L, Kristiansen K, Ning G, Wang W (2017) Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun 8:1785

    PubMed  PubMed Central  Google Scholar 

  • Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149

    CAS  PubMed  Google Scholar 

  • Guo JR, Dong XF, Liu S, Tong JM (2018) High-throughput sequencing reveals the effect of Bacillus subtilis CGMCC 1.921 on the cecal microbiota and gene expression in ileum mucosa of laying hens. Poult Sci 97:2543–2556

    CAS  PubMed  Google Scholar 

  • Holmes E, Li JV, Marchesi JR, Nicholson JK (2012) Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab 16:559–564

    CAS  PubMed  Google Scholar 

  • Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha and obesity-induced insulin resistance. Science 271:665–670

    CAS  PubMed  Google Scholar 

  • Huang C, Chen J, Wang J, Zhou H, Lu Y, Lou L, Zheng J, Tian L, Wang X, Cao Z, Zeng Y (2017) Dysbiosis of intestinal microbiota and decreased antimicrobial peptide level in Paneth cells during hypertriglyceridemia-related acute necrotizing pancreatitis in rats. Front Microbiol 8:776

    PubMed  PubMed Central  Google Scholar 

  • Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P (2009) Bile acids as regulatory molecules. J Lipid Res 50:1509–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia W, Xie G, Jia W (2018) Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 15:111–128

    CAS  PubMed  Google Scholar 

  • Jiang S, Xu J, Qian DW, Shang EX, Liu P, Su SL, Leng XJ, Guo JM, Duan JA, Du L, Zhao M (2014) Comparative metabolites in plasma and urine of normal and type 2 diabetic rats after oral administration of the traditional Chinese scutellaria-coptis herb couple by ultra performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 965:27–32

    CAS  PubMed  Google Scholar 

  • Komaroff AL (2017) The Microbiome and risk for obesity and diabetes. JAMA 317:355–356

    PubMed  Google Scholar 

  • Kumar DP, Rajagopal S, Mahavadi S, Mirshahi F, Grider JR, Murthy KS, Sanyal AJ (2012) Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells. Biochem Biophys Res Commun 427:600–605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuno T, Hirayama-Kurogi M, Ito S, Ohtsuki S (2008) Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels. Sci Rep 8:1253

    Google Scholar 

  • Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T (2009) Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 32:1663–1668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Wang H, Shi Q, Wang N, Zhang Z, Xiong C, Liu J, Chen Y, Jiang L, Jiang Q (2017a) Effects of oral florfenicol and azithromycin on gut microbiota and adipogenesis in mice. PLoS One 12:e0181690

    PubMed  PubMed Central  Google Scholar 

  • Li W, Yang X, Zheng T, Xing S, Wu Y, Bian F, Wu G, Li Y, Li J, Bai X, Wu D, Jia X, Wang L, Zhu L, Jin S (2017b) TNF-α stimulates endothelial palmitic acid transcytosis and promotes insulin resistance. Sci Rep 7:44659

    PubMed  PubMed Central  Google Scholar 

  • Li J, Wu T, Li N, Wang X, Chen G, Lyu X (2018) Bilberry anthocyanin extract promotes intestinal barrier function and inhibits digestive enzyme activity by regulating the gut microbiota in aging rats. Food Funct 10:333–343

    Google Scholar 

  • Liu SZ, Deng YX, Chen B, Zhang XJ, Shi QZ, Qiu XM (2013) Antihyperglycemic effect of the traditional Chinese scutellaria-coptis herb couple and its main components in streptozotocin-induced diabetic rats. J Ethnopharmacol 145:490–498

    CAS  PubMed  Google Scholar 

  • Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J, Zhao S, Liu W, Wang X, Xia H, Liu Z, Cui B, Liang P, Xi L, Jin J, Ying X, Wang X, Zhao X, Li W, Jia H, Lan Z, Li F, Wang R, Sun Y, Yang M, Shen Y, Jie Z, Li J, Chen X, Zhong H, Xie H, Zhang Y, Gu W, Deng X, Shen B, Xu X, Yang H, Xu G, Bi Y, Lai S, Wang J, Qi L, Madsen L, Wang J, Ning G, Kristiansen K, Wang W (2017) Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med 23:859–868

    CAS  PubMed  Google Scholar 

  • Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8

    CAS  PubMed  Google Scholar 

  • Maa MC, Chang MY, Hsieh MY, Chen YJ, Yang CJ, Chen ZC, Li YK, Yen CK, Wu RR, Leu T (2010) Butyrate reduced lipopolysaccharide-mediated macrophage migration by suppression of Src enhancement and focal adhesion kinase activity. J Nutr Biochem 21:1186–1192

    CAS  PubMed  Google Scholar 

  • Marcobal A, Kashyap PC, Nelson TA, Aronov PA, Donia MS, Spormann A, Fischbach MA, Sonnenburg JL (2013) A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J 7:1933–1943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moretto A, Lotti M, Triban C, Di Gregorio F, Fiori MG (1992) Neuropathy target esterase is not reduced in neural tissues of diabetic rats. Diabete Metab 18:218–220

    CAS  PubMed  Google Scholar 

  • Park CH, Shin MR, An BK, Joh HW, Lee JC, Roh SS, Yokozawa T (2017) Heat-processed scutellariae radix protects hepatic inflammation through the amelioration of oxidative stress in lipopolysaccharide-induced mice. Am J Chin Med 45:1233–1252

    CAS  PubMed  Google Scholar 

  • Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, Forslund K, Hildebrand F, Prifti E, Falony G, Le Chatelier E, Levenez F, Doré J, Mattila I, Plichta DR, Pöhö P, Hellgren LI, Arumugam M, Sunagawa S, Vieira-Silva S, Jørgensen T, Holm JB, Trošt K, Consortium MHIT, Kristiansen K, Brix S, Raes J, Wang J, Hansen T, Bork P, Brunak S, Oresic M, Ehrlich SD, Pedersen O (2016) Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535:376–581

    CAS  PubMed  Google Scholar 

  • Pols TW, Nomura M, Harach T, Lo Sasso G, Oosterveer MH, Thomas C, Rizzo G, Gioiello A, Adorini L, Pellicciari R, Auwerx J, Schoonjans K (2011) TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab 14:747–757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60

    CAS  PubMed  Google Scholar 

  • Ryuk JA, Lixia M, Cao S, Ko BS, Park S (2017) Efficacy and safety of Gegen Qinlian decoction for normalizing hyperglycemia in diabetic patients: A systematic review and meta-analysis of randomized clinical trials. Complement Ther Med 33:6–13

    PubMed  Google Scholar 

  • Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 105:16767–16772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanugul K, Akao K, Li Y, Kakiuchi N, Nakamura N, Hattori M (2005) Isolation of a human intestinal bacterium that transforms mangiferin to norathyriol and inducibility of the enzyme that cleaves a C-glucosyl bond. Biol Pharm Bull 28:1672–1678

    CAS  PubMed  Google Scholar 

  • Shao JW, Cai X (2014) Research progress of rat models of type 2 diabetes induced by high calorie diet combined with streptozotocin. Acta Laboratorium Animalis Scientia Sinica 22:90–93

    CAS  Google Scholar 

  • Sina C, Gavrilova O, Förster M, Till A, Derer S, Hildebrand F, Raabe B, Chalaris A, Scheller J, Rehmann A, Franke A, Ott S, Häsler R, Nikolaus S, Fölsch UR, Rose-John S, Jiang HP, Li J, Schreiber S, Rosenstiel P (2009) G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J Immunol 183:7514–7522

    CAS  PubMed  Google Scholar 

  • Solinas G, Becattini B (2016) JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol Metab 6:174–184

    PubMed  PubMed Central  Google Scholar 

  • Stanley TL, Zanni MV, Johnsen S, Rasheed S, Makimura H, Lee H, Khor VK, Ahima RS, Grinspoon SK (2011) TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J Clin Endocrinol Metab 96:146–150

    Google Scholar 

  • Tao JH, Duan JA, Jiang S, Feng NN, Qiu WQ, Ling Y (2017) Polysaccharides from Chrysanthemum morifolium Ramat ameliorate colitis rats by modulating the intestinal microbiota community. Oncotarget 8:80790–80803

    PubMed  PubMed Central  Google Scholar 

  • Tedelind S, Westberg F, Kjerrulf M, Vidal A (2007) Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol 13:2826–2832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thaiss CA, Levy M, Grosheva I, Zheng D, Soffer E, Blacher E, Braverman S, Tengeler AC, Barak O, Elazar M, Ben-Zeev R, Lehavi-Regev D, Katz MN, Pevsner-Fischer M, Gertler A, Halpern Z, Harmelin A, Aamar S, Serradas P, Grosfeld A, Shapiro H, Geiger B, Elinav E (2018) Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359:1376–1383

    CAS  PubMed  Google Scholar 

  • Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K (2009) TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10:167–177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thorburn AN, Macia L, Mackay CR (2014) Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity. 40:833–842

    CAS  PubMed  Google Scholar 

  • Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61:364–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249

    CAS  PubMed  Google Scholar 

  • Uematsu H, Sato N, Hossain MZ, Ikeda T, Hoshino E (2003) Degradation of arginine and other amino acids by butyrate-producing asaccharolytic anaerobic Gram-positive rods in periodontal pockets. Arch Oral Biol. 48:423–429

    CAS  PubMed  Google Scholar 

  • Wahlström A, Sayin SI, Marschall HU, Bäckhed F (2016) Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24:41–50

    PubMed  Google Scholar 

  • Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Shou JW, Li XY, Zhao ZX, Fu J, He CY, Feng R, Ma C, Wen BY, Guo F, Yang XY, Han YX, Wang LL, Tong Q, You XF, Lin Y, Kong WJ, Si SY, Jiang JD (2017) Berberine-induced bioactive metabolites of the gut microbiota improve energy metabolism. Metabolism 70:72–84

    CAS  PubMed  Google Scholar 

  • Wang Y, Sakka M, Yagi H, Kaneko S, Katsuzaki H, Kunitake E, Kimura T, Sakka K (2018) Ruminiclostridium josui Abf62A-Axe6A: A tri-functional xylanolytic enzyme exhibiting α-l-arabinofuranosidase, endoxylanase, and acetylxylan esterase activities. Enzyme Microb Technol 117:1–8

    CAS  PubMed  Google Scholar 

  • Wei X, Tao J, Xiao S, Jiang S, Shang E, Zhu Z, Qian D, Duan J (2018) Xiexin Tang improves the symptom of type 2 diabetic rats by modulation of the gut microbiota. Sci Rep 8:3685

    PubMed  PubMed Central  Google Scholar 

  • Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M, Xifra G, Mercader JM, Torrents D, Burcelin R, Ricart W, Perkins R, Fernàndez-Real JM, Bäckhed F (2017) Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23:850–858

    CAS  PubMed  Google Scholar 

  • Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Lian F, Zhao L, Zhao Y, Chen X, Zhang X, Guo Y, Zhang C, Zhou Q, Xue Z, Pang X, Zhao L, Tong X (2015) Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME J 9:552–562

    PubMed  Google Scholar 

  • Yang X, Zhang Q, Gao Z, Yu C, Zhang L (2018) Baicalin alleviates IL-1β-induced inflammatory injury via down-regulating miR-126 in chondrocytes. Biomed Pharmacother 99:184–190

    CAS  PubMed  Google Scholar 

  • Yanto TA, Huang I, Kosasih FN, Lugito NPH (2018) Nightmare and abnormal dreams: rare side effects of metformin. Case Rep Endocrinol 2018:7809305

    PubMed  PubMed Central  Google Scholar 

  • Yoneno K, Hisamatsu T, Shimamura K, Kamada N, Ichikawa R, Kitazume MT, Mori M, Uo M, Namikawa Y, Matsuoka K, Sato T, Koganei K, Sugita A, Kanai T, Hibi T (2013) TGR5 signaling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn's disease. Immunology 139:19–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaoui P, Hannedouche T, Combe C (2017) Cardiovascular protection of diabetic patient with chronic renal disease and particular case of end-stage renal disease in elderly patients. Nephrol Ther 13:16–24

    Google Scholar 

  • Zhang H, Wei J, Xue R, Wu JD, Zhao W, Wang ZZ, Wang SK, Zhou ZX, Song DQ, Wang YM, Pan HN, Kong WJ, Jiang JD (2010) Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism 59:285–292

    PubMed  Google Scholar 

  • Zhang C, Zhang M, Pang X, Zhao Y, Wang L, Zhao L (2012a) Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J 6:1848–1857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhao Y, Zhang M, Pang X, Xu J, Kang C, Li M, Zhang C, Zhang Z, Zhang Y, Li X, Ning G, Zhao L (2012b) Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One 7:e42529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Guo Z, Xue Z, Sun Z, Zhang M, Wang L, Wang G, Wang F, Xu J, Cao H, Xu H, Lv Q, Zhong Z, Chen Y, Qimuge S, Menghe B, Zheng Y, Zhao L, Chen W, Zhang H (2015) A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J 9:1979–1990

    PubMed  PubMed Central  Google Scholar 

  • Zhou X, Li H, Shi Z, Gao S, Wei S, Li K, Wang J, Li J, Wang R, Gong M, Zhao Y, Xiao X (2017) Inhibition activity of a traditional Chinese herbal formula Huang-Lian-Jie-Du-Tang and its major components found in its plasma profile on neuraminidase-1. Sci Rep 7:15549

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Nature Science Foundation of China (No. 81673831) and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization (No. ZDXM-1-10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Jiang or Jinao Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 484 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., Liu, C., Chen, M. et al. Scutellariae radix and coptidis rhizoma ameliorate glycolipid metabolism of type 2 diabetic rats by modulating gut microbiota and its metabolites. Appl Microbiol Biotechnol 104, 303–317 (2020). https://doi.org/10.1007/s00253-019-10174-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10174-w

Keywords

Navigation