Skip to main content

Advertisement

Log in

Diabetic macular ischemia

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aim

Since its relevance on diagnosis and prognosis of diabetic retinopathy (DR), this review will examine a multimodal imaging approach to detect diabetic macular ischemia (DMI).

Methods

A PubMed engine search was carried out using the term “macular ischemia” paired with “diabetes,” and “diabetic macular ischemia” paired to “fluorescein angiography,” “ultra-wide field fluorescein angiography,” “optical coherence tomography angiography,” “octa,” “2D octa,” “ultra-wide field octa,” “3D octa,” “visual acuity.” All studies published in English up to October 2021 irrespective of their publication status were reviewed, and relevant publications were included in this review.

Results

Recently, new technologies have been proposed as an alternative to fluorescein angiography (FA), which is an actual diagnostic gold standard technique. Nowadays, optical coherence tomography angiography (OCTA) has emerged as the most promising and reliable procedure able to provide a qualitative and quantitative description of DMI. Newer three-dimensional (3D) OCTA approach will be discussed too. Moreover, we will discuss how OCTA might identify preclinical alterations before the onset of DR and allow prediction about the progression of disease.

Conclusion

OCTA has significantly expanded our knowledge on diabetic macular ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lechner J, O’Leary OE, Stitt AW (2017) The pathology associated with diabetic retinopathy. Vis Res. https://doi.org/10.1016/j.visres.2017.04.003

    Article  PubMed  Google Scholar 

  2. Querques G (2019) Eye complications of diabetes. Acta Diabetol 56(9):971. https://doi.org/10.1007/s00592-019-01377-8

    Article  PubMed  Google Scholar 

  3. Nentwich MM (2015) Diabetic retinopathy - ocular complications of diabetes mellitus. World J Diabetes 6(3):489. https://doi.org/10.4239/wjd.v6.i3.489

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sakata K, Funatsu H, Harino S, Noma H, Hori S (2007) Relationship of macular microcirculation and retinal thickness with visual acuity in diabetic macular edema. Ophthalmology 114(11):2061–2069. https://doi.org/10.1016/j.ophtha.2007.01.003

    Article  PubMed  Google Scholar 

  5. Sim DA, Keane PA, Zarranz-Ventura J et al (2013) Predictive factors for the progression of diabetic macular ischemia. Am J Ophthalmol. https://doi.org/10.1016/j.ajo.2013.05.033

    Article  PubMed  Google Scholar 

  6. Bresnick GH, Venecia G, Myers FL, Harris JA, Davis MD (1975) Retinal ischemia in diabetic retinopathy. Arch Ophthalmol 93(12):1300–1310. https://doi.org/10.1001/archopht.1975.01010020934002

    Article  CAS  PubMed  Google Scholar 

  7. Beltramo E, Porta M (2013) Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem. https://doi.org/10.2174/09298673113209990022

    Article  PubMed  Google Scholar 

  8. Campochiaro PA, Wykoff CC, Shapiro H, Rubio RG, Ehrlich JS (2014) Neutralization of vascular endothelial growth factor slows progression of retinal nonperfusion in patients with diabetic macular edema. Ophthalmology 121(9):1783–1789. https://doi.org/10.1016/j.ophtha.2014.03.021

    Article  PubMed  Google Scholar 

  9. Arend O, Wolf S, Jung F et al (1991) Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network. Br J Ophthalmol 75(9):514–518. https://doi.org/10.1136/bjo.75.9.514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ashton N (1953) Arteriolar involvement in diabetic retinopathy. Br J Ophthalmol. https://doi.org/10.1136/bjo.37.5.282

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bresnick GH, Condit R, Syrjala S, Palta M, Groo A, Korth K (1984) Abnormalities of the foveal avascular zone in diabetic retinopathy. Arch Ophthalmol 102(9):1286–1293. https://doi.org/10.1001/archopht.1984.01040031036019

    Article  CAS  PubMed  Google Scholar 

  12. Mansour AM, Schachat A, Bodiford G, Haymond R (1993) Foveal avascular zone in diabetes mellitus. Retina 13(2):125–128. https://doi.org/10.1097/00006982-199313020-00006

    Article  CAS  PubMed  Google Scholar 

  13. Conrath J, Giorgi R, Raccah D, Ridings B (2005) Foveal avascular zone in diabetic retinopathy: quantitative vs qualitative assessment. Eye 19(3):322–326. https://doi.org/10.1038/sj.eye.6701456

    Article  CAS  PubMed  Google Scholar 

  14. Treatment E, Retinopathy D (1991) Classification of diabetic retinopathy from fluorescein angiograms: ETDRS report number 11. Ophthalmology 98(5):807–822. https://doi.org/10.1016/S0161-6420(13)38013-0

    Article  Google Scholar 

  15. Durbin MK, An L, Shemonski ND et al (2017) Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. https://doi.org/10.1001/jamaophthalmol.2017.0080

    Article  PubMed  PubMed Central  Google Scholar 

  16. Carnevali A, Sacconi R, Corbelli E et al (2017) Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol. https://doi.org/10.1007/s00592-017-0996-8

    Article  PubMed  Google Scholar 

  17. Battista M, Borrelli E, Sacconi R, Bandello F, Querques G (2020) Optical coherence tomography angiography in diabetes: a review. Eur J Ophthalmol. https://doi.org/10.1177/1120672119899901

    Article  PubMed  Google Scholar 

  18. Chatziralli I, Touhami S, Cicinelli MV et al (2021) Disentangling the association between retinal non-perfusion and anti-VEGF agents in diabetic retinopathy. Eye. https://doi.org/10.1038/s41433-021-01750-4

    Article  PubMed  Google Scholar 

  19. Borrelli E, Sarraf D, Freund KB, Sadda SR (2018) OCT angiography and evaluation of the choroid and choroidal vascular disorders. Prog Retin Eye Res 67:30–55. https://doi.org/10.1016/j.preteyeres.2018.07.002

    Article  PubMed  Google Scholar 

  20. La Mantia A, Kurt RA, Mejor S et al (2019) Comparing fundus fluorescein angiography and swept-source optical coherence tomography angiography in the evaluation of diabetic macular perfusion. Retina 39(5):926–937. https://doi.org/10.1097/IAE.0000000000002045

    Article  PubMed  Google Scholar 

  21. Lee CS, Lee AY, Sim DA et al (2015) Reevaluating the definition of intraretinal microvascular abnormalities and neovascularization elsewhere in diabetic retinopathy using optical coherence tomography and fluorescein angiography. Am J Ophthalmol 159(1):101-110.e1. https://doi.org/10.1016/j.ajo.2014.09.041

    Article  PubMed  Google Scholar 

  22. Agemy SA, Scripsema NK, Shah CM et al (2015) Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina 35(11):2353–2363. https://doi.org/10.1097/IAE.0000000000000862

    Article  PubMed  Google Scholar 

  23. Ishibazawa A, Nagaoka T, Takahashi A et al (2015) Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol 160(1):35-44.e1. https://doi.org/10.1016/j.ajo.2015.04.021

    Article  PubMed  Google Scholar 

  24. Treatment E, Retinopathy D (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified airlie house classification: ETDRS report number 10. Ophthalmology 98(5):786–806. https://doi.org/10.1016/S0161-6420(13)38012-9

    Article  Google Scholar 

  25. Wilkinson CP, Ferris FL, Klein RE et al (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110(9):1677–1682. https://doi.org/10.1016/S0161-6420(03)00475-5

    Article  CAS  PubMed  Google Scholar 

  26. Bradley PD, Sim DA, Keane PA et al (2016) The evaluation of diabetic macular ischemia using optical coherence tomography angiography. Investig Ophthalmol Vis Sci 57(2):626–631. https://doi.org/10.1167/iovs.15-18034

    Article  CAS  Google Scholar 

  27. Arya M, Filho MB, Rebhun CB et al (2021) Analyzing relative flow speeds in diabetic retinopathy using variable interscan time analysis OCT angiography. Ophthalmol Retin 5(1):49–59. https://doi.org/10.1016/j.oret.2020.06.024

    Article  Google Scholar 

  28. Kwan ASL, Barry C, McAllister IL, Constable I (2006) Fluorescein angiography and adverse drug reactions revisited: the lions eye experience. Clin Exp Ophthalmol 34(1):33–38. https://doi.org/10.1111/j.1442-9071.2006.01136.x

    Article  PubMed  Google Scholar 

  29. Spaide RF, Klancnik JM, Cooney MJ (2015) Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography. JAMA Ophthalmol 133(1):66–73. https://doi.org/10.1001/jamaophthalmol.2014.3950

    Article  PubMed  Google Scholar 

  30. Spaide RF, Klancnik JM, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133(1):45–50. https://doi.org/10.1001/jamaophthalmol.2014.3616

    Article  PubMed  Google Scholar 

  31. Rabiolo A, Parravano M, Querques L et al (2017) Ultra-wide-field fluorescein angiography in diabetic retinopathy: a narrative review. Clin Ophthalmol 11:803–807. https://doi.org/10.2147/OPTH.S133637

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wessel MM, Aaker GD, Parlitsis G, Cho M, D’Amico DJ, Kiss S (2012) Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina. https://doi.org/10.1097/IAE.0b013e3182278b64

    Article  PubMed  Google Scholar 

  33. Sim DA, Keane PA, Rajendram R et al (2014) Patterns of peripheral retinal and central macula ischemia in diabetic retinopathy as evaluated by ultra-widefield fluorescein angiography. Am J Ophthalmol 158(1):144-153.e1. https://doi.org/10.1016/j.ajo.2014.03.009

    Article  PubMed  Google Scholar 

  34. Borrelli E, Parravano M, Sacconi R et al (2020) Guidelines on optical coherence tomography angiography imaging: 2020 focused update. Ophthalmol Ther 9(4):697–707. https://doi.org/10.1007/s40123-020-00286-2

    Article  PubMed  PubMed Central  Google Scholar 

  35. Borrelli E, Sadda SVR, Uji A, Querques G (2019) Pearls and pitfalls of optical coherence tomography angiography imaging: a review. Ophthalmol Ther. https://doi.org/10.1007/s40123-019-0178-6

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rabiolo A, Carnevali A, Bandello F, Querques G (2016) Optical coherence tomography angiography: Evolution or revolution? Exp Rev Ophthalmol 11(4):243–245. https://doi.org/10.1080/17469899.2016.1209409

    Article  CAS  Google Scholar 

  37. Carnevali A, Mastropasqua R, Gatti V et al (2020) Optical coherence tomography angiography in intermediate and late age-related macular degeneration: review of current technical aspects and applications. Appl Sci 10(24):1–20. https://doi.org/10.3390/app10248865

    Article  CAS  Google Scholar 

  38. Jiaa Y, Baileya ST, Hwanga TS et al (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci USA 112(18):E2395–E2402. https://doi.org/10.1073/pnas.1500185112

    Article  CAS  Google Scholar 

  39. Campbell JP, Zhang M, Hwang TS et al (2017) Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep 7:1–11. https://doi.org/10.1038/srep42201

    Article  CAS  Google Scholar 

  40. Sacconi R, Lamanna F, Borrelli E et al (2020) Morphofunctional analysis of the retina in patients with type 1 diabetes without complications after 30 years of disease. Sci Rep 10(1):1–10. https://doi.org/10.1038/s41598-019-57034-1

    Article  CAS  Google Scholar 

  41. Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH (2016) Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Investig Ophthalmol Vis Sci. https://doi.org/10.1167/iovs.15-18904

    Article  Google Scholar 

  42. Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y (2015) Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 35(11):2377–2383. https://doi.org/10.1097/IAE.0000000000000849

    Article  PubMed  Google Scholar 

  43. Couturier A, Mané V, Bonnin S et al (2015) Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. Retina 35(11):2384–2391. https://doi.org/10.1097/IAE.0000000000000859

    Article  PubMed  Google Scholar 

  44. Hasegawa N, Nozaki M, Takase N, Yoshida M, Ogura Y (2016) New insights into microaneurysms in the deep capillary plexus detected by optical coherence tomography angiography in diabetic macular edema. Investig Ophthalmol Vis Sci. https://doi.org/10.1167/iovs.15-18782

    Article  Google Scholar 

  45. Giuffrè C, Carnevali A, Cicinelli MV, Querques L, Querques G, Bandello F (2017) Optical coherence tomography angiography of venous loops in diabetic retinopathy. Ophthalmic Surg Lasers Imag Retin 48(6):518–520. https://doi.org/10.3928/23258160-20170601-13

    Article  Google Scholar 

  46. Elbendary AM, Abouelkheir HY (2018) Bimodal imaging of proliferative diabetic retinopathy vascular features using swept source optical coherence tomography angiography. Int J Ophthalmol 11(9):1528–1533. https://doi.org/10.18240/ijo.2018.09.16

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sacconi R, Casaluci M, Borrelli E et al (2019) Multimodal imaging assessment of vascular and neurodegenerative retinal alterations in Type 1 diabetic patients without fundoscopic signs of diabetic retinopathy. J Clin Med 8(9):1409. https://doi.org/10.3390/jcm8091409

    Article  PubMed Central  Google Scholar 

  48. Yu S, Pang CE, Gong Y et al (2015) The spectrum of superficial and deep capillary ischemia in retinal artery occlusion. Am J Ophthalmol 159(1):53-63.e2. https://doi.org/10.1016/j.ajo.2014.09.027

    Article  PubMed  Google Scholar 

  49. Simonett JM, Scarinci F, Picconi F et al (2017) Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus. Acta Ophthalmol 95(8):e751–e755. https://doi.org/10.1111/aos.13404

    Article  PubMed  Google Scholar 

  50. Scarinci F, Nesper PL, Fawzi AA (2016) Deep retinal capillary nonperfusion is associated with photoreceptor disruption in diabetic macular ischemia. Am J Ophthalmol 168:129–138. https://doi.org/10.1016/j.ajo.2016.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sacconi R, Corbelli E, Carnevali A et al (2018) Optical coherence tomography angiography in pseudophakic cystoid macular oedema compared to diabetic macular oedema: qualitative and quantitative evaluation of retinal vasculature. Br J Ophthalmol 102(12):1684–1690. https://doi.org/10.1136/bjophthalmol-2017-311240

    Article  PubMed  Google Scholar 

  52. Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S (2016) Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefe’s Arch Clin Exp Ophthalmol 254(6):1051–1058. https://doi.org/10.1007/s00417-015-3148-2

    Article  CAS  Google Scholar 

  53. Dimitrova G, Chihara E, Takahashi H, Amano H, Okazaki K (2017) Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Investig Ophthalmol Vis Sci 58(1):190–196. https://doi.org/10.1167/iovs.16-20531

    Article  Google Scholar 

  54. Samara WA, Shahlaee A, Adam MK et al (2017) Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology 124(2):235–244. https://doi.org/10.1016/j.ophtha.2016.10.008

    Article  PubMed  Google Scholar 

  55. Borrelli E, Lonngi M, Balasubramanian S et al (2019) Macular microvascular networks in healthy pediatric subjects. Retina 39(6):1216–1224. https://doi.org/10.1097/IAE.0000000000002123

    Article  PubMed  Google Scholar 

  56. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G (2018) Optical coherence tomography angiography. Prog Retin Eye Res 64:1–55. https://doi.org/10.1016/j.preteyeres.2017.11.003

    Article  PubMed  Google Scholar 

  57. Ploner SB, Moult EM, Choi W et al (2016) Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular: Pathology using variable interscan time analysis. Retina 36:S118–S126. https://doi.org/10.1097/IAE.0000000000001328

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rabiolo A, Gelormini F, Marchese A et al (2018) Macular perfusion parameters in different angiocube sizes: Does the size matter in quantitative optical coherence tomography angiography? Investig Ophthalmol Vis Sci 59(1):231–237. https://doi.org/10.1167/iovs.17-22359

    Article  CAS  Google Scholar 

  59. Borrelli E, Sacconi R, Parravano M et al. (2021) OCTA assessment of the diabetic macula. Vol Publish Ah. https://doi.org/10.1097/iae.0000000000003145

  60. Borrelli E, Sacconi R, Brambati M, Bandello F, Querques G (2019) In vivo rotational three-dimensional OCTA analysis of microaneurysms in the human diabetic retina. Sci Rep. https://doi.org/10.1038/s41598-019-53357-1

    Article  PubMed  PubMed Central  Google Scholar 

  61. Borrelli E, Sacconi R, Querques L, Battista M, Bandello F, Querques G (2020) Quantification of diabetic macular ischemia using novel three-dimensional optical coherence tomography angiography metrics. J Biophoton. https://doi.org/10.1002/jbio.202000152

    Article  Google Scholar 

  62. Borrelli E, Sacconi R, Klose G, de Sisternes L, Bandello F, Querques G. Rotational Three-dimensional OCTA: a Notable New Imaging Tool to Characterize Type 3 Macular Neovascularization. Sci Rep. 2019;9(1). doi:https://doi.org/10.1038/s41598-019-53307-x

  63. Borrelli E, Sacconi R, Brambati M, Bandello F, Querques G (2019) In vivo rotational three-dimensional OCTA analysis of microaneurysms in the human diabetic retina. Sci Rep 9(1):1–8. https://doi.org/10.1038/s41598-019-53357-1

    Article  CAS  Google Scholar 

  64. Borrelli E, Parravano M, Costanzo E et al (2021) Using three-dimensional optical coherence tomography angiography metrics improves repeatability on quantification of ischemia in eyes with diabetic macular edema. Retina 41(8):1660–1667. https://doi.org/10.1097/IAE.0000000000003077

    Article  CAS  PubMed  Google Scholar 

  65. Borrelli E, Grosso D, Parravano M et al (2021) Volume rendered 3D OCTA assessment of macular ischemia in patients with type 1 diabetes and without diabetic retinopathy. Sci Rep 0123456789:1–7. https://doi.org/10.1038/s41598-021-99297-7

    Article  CAS  Google Scholar 

  66. Sun Z, Tang F, Wong R et al (2019) OCT angiography metrics predict progression of diabetic retinopathy and development of diabetic macular edema: a prospective study. Ophthalmology 126(12):1675–1684. https://doi.org/10.1016/j.ophtha.2019.06.016

    Article  PubMed  Google Scholar 

  67. Tsai ASH, Jordan-Yu JM, Gan ATL et al (2021) Diabetic macular ischemia: Influence of optical coherence tomography angiography parameters on changes in functional outcomes over one year. Investig Ophthalmol Vis Sci. https://doi.org/10.1167/IOVS.62.1.9

    Article  Google Scholar 

  68. Ip MS, Domalpally A, Sun JK, Ehrlich JS (2015) Long-term effects of therapy with ranibizumab on diabetic retinopathy severity and baseline risk factors for worsening retinopathy. Ophthalmology 122(2):367–374. https://doi.org/10.1016/j.ophtha.2014.08.048

    Article  PubMed  Google Scholar 

  69. Hsieh YT, Alam MN, Le D et al (2019) OCT angiography biomarkers for predicting visual outcomes after ranibizumab treatment for diabetic macular edema. Ophthalmol Retina. https://doi.org/10.1016/j.oret.2019.04.027

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Funding

No funding or grant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Querques.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this article. Beatrice Tombolini: none. Enrico Borrelli: consultant for Zeiss (Dublin, USA), CenterVue (Padua, Italy). Riccardo Sacconi: consultant for Bayer Shering-Pharma (Berlin, Germany), Novartis (Basel, Switzerland), Zeiss (Dublin, USA). Francesco Bandello consultant for: Alcon (Fort Worth,Texas, USA), Alimera Sciences (Alpharetta, Georgia, USA), Allergan Inc (Irvine, California, USA), Farmila-Thea (Clermont-Ferrand, France), Bayer Shering-Pharma (Berlin, Germany), Bausch And Lomb (Rochester, New York, USA), Genentech (San Francisco, California, USA), Hoffmann-La-Roche (Basel, Switzerland), NovagaliPharma (Évry, France), Novartis (Basel, Switzerland), Sanofi-Aventis (Paris, France), Thrombogenics (Heverlee,Belgium), Zeiss (Dublin, USA). Giuseppe Querques consultant for: Alimera Sciences (Alpharetta, Georgia, USA), Allergan Inc (Irvine, California, USA), Bayer Shering-Pharma (Berlin, Germany), Heidelberg (Germany), Novartis (Basel, Switzerland), Sandoz (Berlin, Germany), Zeiss (Dublin, USA).

Human and Animal Rights

This article does not contain any studies involving human participants performed by any of the authors.

Informed consent

For this type of article a formal consent is not required.

Additional information

Managed by Massimo Federici.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tombolini, B., Borrelli, E., Sacconi, R. et al. Diabetic macular ischemia. Acta Diabetol 59, 751–759 (2022). https://doi.org/10.1007/s00592-021-01844-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-021-01844-1

Keywords

Navigation