Skip to main content
Log in

Epicardial adipose tissue: at the heart of the obesity complications

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

In recent years, the anatomic and functional contiguity of epicardial adipose tissue (EAT) to myocardium and coronary arteries has gained increasing interest for its potential pathogenetic role in obesity-related cardiac diseases. Besides its known and attributed biochemical cardioprotective properties, it is becoming evident that, in metabolic disease states, EAT-secreted bioactive molecules may play an important role in the pathogenesis of coronary artery disease and cardiac arrhythmias. EAT-derived inflammatory cytokines and reactive oxidative species may, indeed, play a part in the development of a local proatherogenic milieu by paracrine and vasocrine mechanisms of interaction. In addition, initial clinical and in vitro studies have pointed out that EAT could be a determinant of the substrate of atrial fibrillation by contributing to the structural and electrical remodeling of myocardium. This article reviews the current state of knowledge on the association of EAT with cardiac dysfunction and the potential factors mediating the cross talk between this fat depot and the underlying cardiac structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6(10):772–783. doi:10.1038/nri1937

    Article  CAS  PubMed  Google Scholar 

  2. Coelho M, Oliveira T, Fernandes R (2013) Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 9(2):191–200. doi:10.5114/aoms.2013.3318120246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guglielmi V, D’Adamo M, Bellia A et al (2015) Iron status in obesity: an independent association with metabolic parameters and effect of weight loss. Nutr Metab Cardiovasc Dis 25(6):541–547. doi:10.1016/j.numecd.2015.02.012S0939-4753(15)00055-1

    Article  CAS  PubMed  Google Scholar 

  4. Marucci A, Menzaghi C, Copetti M et al (2015) Strong evidence of sexual dimorphic effect of adiposity excess on insulin sensitivity. Acta Diabetol 52(5):991–998. doi:10.1007/s00592-015-0804-2

    Article  CAS  PubMed  Google Scholar 

  5. Coutinho T, Goel K, Correa de Sa D et al (2011) Central obesity and survival in subjects with coronary artery disease: a systematic review of the literature and collaborative analysis with individual subject data. J Am Coll Cardiol 57(19):1877–1886. doi:10.1016/j.jacc.2010.11.058S0735-1097(11)00732-7

    Article  PubMed  Google Scholar 

  6. Lombardi F, Gullotta F, Columbaro M et al (2007) Compound heterozygosity for mutations in LMNA in a patient with a myopathic and lipodystrophic mandibuloacral dysplasia type A phenotype. J Clin Endocrinol Metab 92(11):4467–4471. doi:10.1210/jc.2007-0116

    Article  CAS  PubMed  Google Scholar 

  7. Guglielmi V, D’Adamo M, D’Apice MR et al (2010) Elbow deformities in a patient with mandibuloacral dysplasia type A. Am J Med Genet A 152A(11):2711–2713. doi:10.1002/ajmg.a.33700

    Article  PubMed  Google Scholar 

  8. Guglielmi V, Maresca L, D’Adamo M et al (2014) Age-related different relationships between ectopic adipose tissues and measures of central obesity in sedentary subjects. PLoS ONE 9(7):e103381. doi:10.1371/journal.pone.0103381PONE-D-14-22290

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sacks HS, Fain JN (2007) Human epicardial adipose tissue: a review. Am Heart J 153(6):907–917. doi:10.1016/j.ahj.2007.03.019

    Article  CAS  PubMed  Google Scholar 

  10. Kwok KH, Lam KS, Xu A (2016) Heterogeneity of white adipose tissue: molecular basis and clinical implications. Exp Mol Med 48:e215. doi:10.1038/emm.2016.5emm20165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morano S, Romagnoli E, Filardi T et al (2015) Short-term effects of glucagon-like peptide 1 (GLP-1) receptor agonists on fat distribution in patients with type 2 diabetes mellitus: an ultrasonography study. Acta Diabetol 52(4):727–732. doi:10.1007/s00592-014-0710-z

    Article  CAS  PubMed  Google Scholar 

  12. Iozzo P (2011) Myocardial, perivascular, and epicardial fat. Diabetes Care 34(Suppl 2):S371–S379. doi:10.2337/dc11-s25034/Supplement_2/S371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bertaso AG, Bertol D, Duncan BB, Foppa M (2013) Epicardial fat: definition, measurements and systematic review of main outcomes. Arq Bras Cardiol 101(1):e18–e28. doi:10.5935/abc.20130138S0066-782X2013002700020

    PubMed  PubMed Central  Google Scholar 

  14. Iacobellis G (2009) Epicardial and pericardial fat: close, but very different. Obesity (Silver Spring) 17(4):625. doi:10.1038/oby.2008.575oby2008575 (author reply 626–627)

    Article  Google Scholar 

  15. Iacobellis G, Willens HJ (2009) Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiogr 22(12):1311–1319. doi:10.1016/j.echo.2009.10.013S0894-7317(09)00996-1 (quiz 1417-1318)

    Article  PubMed  Google Scholar 

  16. Gorter PM, van Lindert AS, de Vos AM et al (2008) Quantification of epicardial and peri-coronary fat using cardiac computed tomography; reproducibility and relation with obesity and metabolic syndrome in patients suspected of coronary artery disease. Atherosclerosis 197(2):896–903. doi:10.1016/j.atherosclerosis.2007.08.016

    Article  CAS  PubMed  Google Scholar 

  17. Schejbal V (1989) Epicardial fatty tissue of the right ventricle–morphology, morphometry and functional significance. Pneumologie 43(9):490–499

    CAS  PubMed  Google Scholar 

  18. Ouwens DM, Sell H, Greulich S, Eckel J (2010) The role of epicardial and perivascular adipose tissue in the pathophysiology of cardiovascular disease. J Cell Mol Med 14(9):2223–2234. doi:10.1111/j.1582-4934.2010.01141.xJCMM1141

    Article  PubMed  PubMed Central  Google Scholar 

  19. Marchington JM, Pond CM (1990) Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int J Obes 14(12):1013–1022

    CAS  PubMed  Google Scholar 

  20. Fain JN, Sacks HS, Bahouth SW, Tichansky DS, Madan AK, Cheema PS (2010) Human epicardial adipokine messenger RNAs: comparisons of their expression in substernal, subcutaneous, and omental fat. Metabolism 59(9):1379–1386. doi:10.1016/j.metabol.2009.12.027S0026-0495(09)00546-0

    Article  CAS  PubMed  Google Scholar 

  21. Sacks HS, Fain JN (2011) Human epicardial fat: what is new and what is missing? Clin Exp Pharmacol Physiol 38(12):879–887. doi:10.1111/j.1440-1681.2011.05601.x

    Article  CAS  PubMed  Google Scholar 

  22. Chechi K, Blanchard PG, Mathieu P, Deshaies Y, Richard D (2013) Brown fat like gene expression in the epicardial fat depot correlates with circulating HDL-cholesterol and triglycerides in patients with coronary artery disease. Int J Cardiol 167(5):2264–2270. doi:10.1016/j.ijcard.2012.06.008S0167-5273(12)00783-8

    Article  PubMed  Google Scholar 

  23. Sacks HS, Fain JN, Bahouth SW et al (2013) Adult epicardial fat exhibits beige features. J Clin Endocrinol Metab 98(9):E1448–E1455. doi:10.1210/jc.2013-1265jc.2013-1265

    Article  CAS  PubMed  Google Scholar 

  24. Vijgen GH, Bouvy ND, Teule GJ et al (2012) Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J Clin Endocrinol Metab 97(7):E1229–E1233. doi:10.1210/jc.2012-1289jc.2012-1289

    Article  CAS  PubMed  Google Scholar 

  25. Iacobellis G, di Gioia CR, Di Vito M et al (2009) Epicardial adipose tissue and intracoronary adrenomedullin levels in coronary artery disease. Horm Metab Res 41(12):855–860. doi:10.1055/s-0029-1231081

    Article  CAS  PubMed  Google Scholar 

  26. Iacobellis G, di Gioia CR, Cotesta D et al (2009) Epicardial adipose tissue adiponectin expression is related to intracoronary adiponectin levels. Horm Metab Res 41(3):227–231. doi:10.1055/s-0028-1100412

    Article  CAS  PubMed  Google Scholar 

  27. Fain JN, Sacks HS, Buehrer B et al (2008) Identification of omentin mRNA in human epicardial adipose tissue: comparison to omentin in subcutaneous, internal mammary artery periadventitial and visceral abdominal depots. Int J Obes (Lond) 32(5):810–815. doi:10.1038/sj.ijo.08037900803790

    Article  CAS  Google Scholar 

  28. Cikim AS, Topal E, Harputluoglu M et al (2007) Epicardial adipose tissue, hepatic steatosis and obesity. J Endocrinol Invest 30(6):459–464. doi:10.1007/BF03346328

    Article  CAS  PubMed  Google Scholar 

  29. Iacobellis G, Ribaudo MC, Assael F et al (2003) Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab 88(11):5163–5168. doi:10.1210/jc.2003-030698

    Article  CAS  PubMed  Google Scholar 

  30. Iacobellis G, Barbaro G, Gerstein HC (2008) Relationship of epicardial fat thickness and fasting glucose. Int J Cardiol 128(3):424–426. doi:10.1016/j.ijcard.2007.12.072S0167-5273(08)00127-7

    Article  PubMed  Google Scholar 

  31. Wang CP, Hsu HL, Hung WC et al (2009) Increased epicardial adipose tissue (EAT) volume in type 2 diabetes mellitus and association with metabolic syndrome and severity of coronary atherosclerosis. Clin Endocrinol (Oxf) 70(6):876–882. doi:10.1111/j.1365-2265.2008.03411.xCEN3411

    Article  Google Scholar 

  32. Iacobellis G, Willens HJ, Barbaro G, Sharma AM (2008) Threshold values of high-risk echocardiographic epicardial fat thickness. Obesity (Silver Spring) 16(4):887–892. doi:10.1038/oby.2008.6oby20086

    Article  Google Scholar 

  33. Rabkin SW (2014) The relationship between epicardial fat and indices of obesity and the metabolic syndrome: a systematic review and meta-analysis. Metab Syndr Relat Disord 12(1):31–42. doi:10.1089/met.2013.0107

    Article  CAS  PubMed  Google Scholar 

  34. Malavazos AE, Di Leo G, Secchi F et al (2010) Relation of echocardiographic epicardial fat thickness and myocardial fat. Am J Cardiol 105(12):1831–1835. doi:10.1016/j.amjcard.2010.01.368S0002-9149(10)00527-8

    Article  PubMed  Google Scholar 

  35. Mahabadi AA, Massaro JM, Rosito GA et al (2009) Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J 30(7):850–856. doi:10.1093/eurheartj/ehn573ehn573

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bettencourt N, Toschke AM, Leite D et al (2012) Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. Int J Cardiol 158(1):26–32. doi:10.1016/j.ijcard.2010.12.085S0167-5273(10)01145-9

    Article  CAS  PubMed  Google Scholar 

  37. Iwayama T, Nitobe J, Watanabe T et al (2014) Role of epicardial adipose tissue in coronary artery disease in non-obese patients. J Cardiol 63(5):344–349. doi:10.1016/j.jjcc.2013.10.002S0914-5087(13)00301-8

    Article  PubMed  Google Scholar 

  38. Strissel KJ, Denis GV, Nikolajczyk BS (2014) Immune regulators of inflammation in obesity-associated type 2 diabetes and coronary artery disease. Curr Opin Endocrinol Diabetes Obes 21(5):330–338. doi:10.1097/MED.0000000000000085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Greif M, Becker A, von Ziegler F et al (2009) Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol 29(5):781–786. doi:10.1161/ATVBAHA.108.180653ATVBAHA.108.180653

    Article  CAS  PubMed  Google Scholar 

  40. McKenney ML, Schultz KA, Boyd JH et al (2014) Epicardial adipose excision slows the progression of porcine coronary atherosclerosis. J Cardiothorac Surg 9:2. doi:10.1186/1749-8090-9-21749-8090-9-2

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mazurek T, Zhang L, Zalewski A et al (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108(20):2460–2466. doi:10.1161/01.CIR.0000099542.57313.C501.CIR.0000099542.57313.C5

    Article  PubMed  Google Scholar 

  42. Baker AR, Harte AL, Howell N et al (2009) Epicardial adipose tissue as a source of nuclear factor-kappaB and c-Jun N-terminal kinase mediated inflammation in patients with coronary artery disease. J Clin Endocrinol Metab 94(1):261–267. doi:10.1210/jc.2007-2579jc.2007-2579

    Article  CAS  PubMed  Google Scholar 

  43. Pedicino D, Severino A, Ucci S et al (2017) Epicardial adipose tissue microbial colonization and inflammasome activation in acute coronary syndrome. Int J Cardiol 236:95–99. doi:10.1016/j.ijcard.2017.02.040

    Article  PubMed  Google Scholar 

  44. Karastergiou K, Fried SK (2013) Multiple adipose depots increase cardiovascular risk via local and systemic effects. Curr Atheroscler Rep 15(10):361. doi:10.1007/s11883-013-0361-5

    Article  PubMed  PubMed Central  Google Scholar 

  45. Henrichot E, Juge-Aubry CE, Pernin A et al (2005) Production of chemokines by perivascular adipose tissue: a role in the pathogenesis of atherosclerosis? Arterioscler Thromb Vasc Biol 25(12):2594–2599. doi:10.1161/01.ATV.0000188508.40052.35

    Article  CAS  PubMed  Google Scholar 

  46. Salgado-Somoza A, Teijeira-Fernandez E, Rubio J, Couso E, Gonzalez-Juanatey JR, Eiras S (2012) Coronary artery disease is associated with higher epicardial retinol-binding protein 4 (RBP4) and lower glucose transporter (GLUT) 4 levels in epicardial and subcutaneous adipose tissue. Clin Endocrinol (Oxf) 76(1):51–58. doi:10.1111/j.1365-2265.2011.04140.x

    Article  CAS  Google Scholar 

  47. Dozio E, Vianello E, Briganti S et al (2014) Increased reactive oxygen species production in epicardial adipose tissues from coronary artery disease patients is associated with brown-to-white adipocyte trans-differentiation. Int J Cardiol 174(2):413–414. doi:10.1016/j.ijcard.2014.04.045S0167-5273(14)00704-9

    Article  PubMed  Google Scholar 

  48. Ahmadi N, Nabavi V, Hajsadeghi F et al (2013) Aged garlic extract with supplement is associated with increase in brown adipose, decrease in white adipose tissue and predict lack of progression in coronary atherosclerosis. Int J Cardiol 168(3):2310–2314. doi:10.1016/j.ijcard.2013.01.182S0167-5273(13)00242-8

    Article  PubMed  Google Scholar 

  49. Iacobellis G, Bianco AC (2011) Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab 22(11):450–457. doi:10.1016/j.tem.2011.07.003S1043-2760(11)00112-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hatem SN, Redheuil A, Gandjbakhch E (2016) Cardiac adipose tissue and atrial fibrillation: the perils of adiposity. Cardiovasc Res 109(4):502–509. doi:10.1093/cvr/cvw001cvw001

    Article  CAS  PubMed  Google Scholar 

  51. Guglielmi V, Maresca L, Lanzillo C et al (2016) Relationship between regional fat distribution and hypertrophic cardiomyopathy phenotype. PLoS ONE 11(7):e0158892. doi:10.1371/journal.pone.0158892PONE-D-16-00255

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tsao HM, Hu WC, Wu MH et al (2011) Quantitative analysis of quantity and distribution of epicardial adipose tissue surrounding the left atrium in patients with atrial fibrillation and effect of recurrence after ablation. Am J Cardiol 107(10):1498–1503. doi:10.1016/j.amjcard.2011.01.027S0002-9149(11)00339-0

    Article  PubMed  Google Scholar 

  53. Nagashima K, Okumura Y, Watanabe I et al (2011) Association between epicardial adipose tissue volumes on 3-dimensional reconstructed CT images and recurrence of atrial fibrillation after catheter ablation. Circ J 75(11):2559–2565. doi:10.1253/circj.CJ-11-0554

    Article  CAS  PubMed  Google Scholar 

  54. Muhib S, Fujino T, Sato N, Hasebe N (2013) Epicardial adipose tissue is associated with prevalent atrial fibrillation in patients with hypertrophic cardiomyopathy. Int Heart J 54(5):297–303. doi:10.1536/ihj.54.297

    Article  PubMed  Google Scholar 

  55. Opolski MP, Staruch AD, Kusmierczyk M et al (2015) Computed tomography angiography for prediction of atrial fibrillation after coronary artery bypass grafting: proof of concept. J Cardiol 65(4):285–292. doi:10.1016/j.jjcc.2014.12.006S0914-5087(14)00359-1

    Article  PubMed  Google Scholar 

  56. Guglielmi V, Cardellini M, Cinti F et al (2015) Omental adipose tissue fibrosis and insulin resistance in severe obesity. Nutr Diabetes 5:e175. doi:10.1038/nutd.2015.22nutd201522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cancello R, Tordjman J, Poitou C et al (2006) Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55(6):1554–1561. doi:10.2337/db06-0133

    Article  CAS  PubMed  Google Scholar 

  58. Jiang DS, Zeng HL, Li R et al (2017) Aberrant epicardial adipose tissue extracellular matrix remodeling in patients with severe ischemic cardiomyopathy: insight from comparative quantitative proteomics. Sci Rep 7:43787. doi:10.1038/srep43787srep43787

    Article  PubMed  PubMed Central  Google Scholar 

  59. Venteclef N, Guglielmi V, Balse E et al (2015) Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J 36(13):795–805a. doi:10.1093/eurheartj/eht099eht099

    Article  PubMed  Google Scholar 

  60. Greulich S, Maxhera B, Vandenplas G et al (2012) Secretory products from epicardial adipose tissue of patients with type 2 diabetes mellitus induce cardiomyocyte dysfunction. Circulation 126(19):2324–2334. doi:10.1161/CIRCULATIONAHA.111.039586CIRCULATIONAHA.111.039586

    Article  CAS  PubMed  Google Scholar 

  61. Samanta R, Pouliopoulos J, Thiagalingam A, Kovoor P (2016) Role of adipose tissue in the pathogenesis of cardiac arrhythmias. Heart Rhythm 13(1):311–320. doi:10.1016/j.hrthm.2015.08.016S1547-5271(15)01030-9

    Article  PubMed  Google Scholar 

  62. Nakanishi K, Fukuda S, Tanaka A et al (2012) Peri-atrial epicardial adipose tissue is associated with new-onset nonvalvular atrial fibrillation. Circ J 76(12):2748–2754. doi:10.1253/circj.CJ-12-0637

    Article  CAS  PubMed  Google Scholar 

  63. Spiroglou SG, Kostopoulos CG, Varakis JN, Papadaki HH (2010) Adipokines in periaortic and epicardial adipose tissue: differential expression and relation to atherosclerosis. J Atheroscler Thromb 17(2):115–130. doi:10.5551/jat.1735

    Article  CAS  PubMed  Google Scholar 

  64. Gaborit B, Venteclef N, Ancel P et al (2015) Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location. Cardiovasc Res 108(1):62–73. doi:10.1093/cvr/cvv208cvv208

    Article  CAS  PubMed  Google Scholar 

  65. Sacks FM, Bray GA, Carey VJ et al (2009) Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 360(9):859–873. doi:10.1056/NEJMoa0804748360/9/859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lombardo M, Bellia A, Padua E et al (2014) Morning meal more efficient for fat loss in a 3-month lifestyle intervention. J Am Coll Nutr 33(3):198–205. doi:10.1080/07315724.2013.863169

    Article  PubMed  Google Scholar 

  67. Bellia A, Salli M, Lombardo M et al (2014) Effects of whole body vibration plus diet on insulin-resistance in middle-aged obese subjects. Int J Sports Med 35(6):511–516. doi:10.1055/s-0033-1354358

    CAS  PubMed  Google Scholar 

  68. Jakicic JM, Otto AD (2005) Physical activity considerations for the treatment and prevention of obesity. Am J Clin Nutr 82(1 Suppl):226S–229S

    CAS  PubMed  Google Scholar 

  69. Lombardo M, Bellia A, Mattiuzzo F et al (2015) Frequent follow-up visits reduce weight regain in long-term management after bariatric surgery. Bariatr Surg Pract Patient Care 10(3):119–125. doi:10.1089/bari.2015.0021

    Article  Google Scholar 

  70. Frikke-Schmidt H, O’Rourke RW, Lumeng CN, Sandoval DA, Seeley RJ (2016) Does bariatric surgery improve adipose tissue function? Obes Rev 17(9):795–809. doi:10.1111/obr.12429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hansen M, Lund MT, Jorgensen AL et al (2016) The effects of diet- and RYGB-induced weight loss on insulin sensitivity in obese patients with and without type 2 diabetes. Acta Diabetol 53(3):423–432. doi:10.1007/s00592-015-0812-210.1007/s00592-015-0812-2

    Article  CAS  PubMed  Google Scholar 

  72. Rabkin SW, Campbell H (2015) Comparison of reducing epicardial fat by exercise, diet or bariatric surgery weight loss strategies: a systematic review and meta-analysis. Obes Rev 16(5):406–415. doi:10.1111/obr.12270

    Article  CAS  PubMed  Google Scholar 

  73. Park JH, Park YS, Kim YJ et al (2010) Effects of statins on the epicardial fat thickness in patients with coronary artery stenosis underwent percutaneous coronary intervention: comparison of atorvastatin with simvastatin/ezetimibe. J Cardiovasc Ultrasound 18(4):121–126. doi:10.4250/jcu.2010.18.4.121

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jonker JT, Lamb HJ, van der Meer RW et al (2010) Pioglitazone compared with metformin increases pericardial fat volume in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95(1):456–460. doi:10.1210/jc.2009-1441jc.2009-1441

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Guglielmi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Managed by Massimo Federici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guglielmi, V., Sbraccia, P. Epicardial adipose tissue: at the heart of the obesity complications. Acta Diabetol 54, 805–812 (2017). https://doi.org/10.1007/s00592-017-1020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-017-1020-z

Keywords

Navigation