Skip to main content

Advertisement

Log in

The impact of type 1 diabetes and diabetic polyneuropathy on muscle strength and fatigability

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Although it is widely accepted that diabetic polyneuropathy (DPN) is linked to a marked decline in neuromuscular performance, information on the possible impact of type 1 diabetes (T1D) on muscle strength and fatigue remains unclear. The purpose of this study was to investigate the effects of T1D and DPN on strength and fatigability in knee extensor muscles.

Methods

Thirty-one T1D patients (T1D), 22 T1D patients with DPN (DPN) and 23 matched healthy control participants (C) were enrolled. Maximal voluntary contraction (MVC) and endurance time at an intensity level of 50% of the MVC were assessed at the knee extensor muscles with an isometric dynamometer. Clinical characteristics of diabetic patients were assessed by considering a wide range of vascular and neurological parameters.

Results

DPN group had lower knee extensor muscles strength than T1D (−19%) and the C group (−37.5%). T1D group was 22% weaker when compared to the C group. Lower body muscle fatigability of DPN group was 22 and 45.5% higher than T1D and C group, respectively. T1D group possessed a higher fatigability (29.4%) compared to C group. A correlation was found between motor and sensory nerve conduction velocity and muscle strength and fatigability.

Conclusions

Patients with T1D are characterised by both a higher fatigability and a lower muscle strength, which are aggravated by DPN. Our data suggest that factors other than nervous damage play a role in the pathogenesis of such defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guariguata L, Whiting DR, Hambleton I et al (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149. doi:10.1016/j.diabres.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  2. Said G (2007) Diabetic neuropathy—a review. Nat Clin Pract Neurol 3:331–340. doi:10.1038/ncpneuro0504

    Article  PubMed  Google Scholar 

  3. Vinik AI, Nevoret M-L, Casellini C, Parson H (2013) Diabetic neuropathy. Endocrinol Metab Clin North Am 42:747–787. doi:10.1016/j.ecl.2013.06.001

    Article  PubMed  Google Scholar 

  4. Balducci S, Sacchetti M, Orlando G et al (2014) Correlates of muscle strength in diabetes: the study on the assessment of determinants of muscle and bone strength abnormalities in diabetes (SAMBA). Nutr Metab Cardiovasc Dis 24:18–26. doi:10.1016/j.numecd.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  5. Krause MP, Riddell MC, Hawke TJ (2011) Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes 12:345–364. doi:10.1111/j.1399-5448.2010.00699.x

    Article  CAS  PubMed  Google Scholar 

  6. Andersen H, Gjerstad MD, Jakobsen J (2004) Atrophy of foot muscles: a measure of diabetic neuropathy. Diabetes Care 27:2382–2385. doi:10.2337/diacare.27.10.2382

    Article  PubMed  Google Scholar 

  7. Andreassen CS, Jakobsen J, Ringgaard S et al (2009) Accelerated atrophy of lower leg and foot muscles-a follow-up study of long-term diabetic polyneuropathy using magnetic resonance imaging (MRI). Diabetologia 52:1182–1191. doi:10.1007/s00125-009-1320-0

    Article  CAS  PubMed  Google Scholar 

  8. Andersen H, Poulsen PL, Mogensen CE, Jakobsen J (1996) Isokinetic muscle strength in long-term IDDM patients in relation to diabetic complications. Diabetes 45:440–445

    Article  CAS  PubMed  Google Scholar 

  9. Allen MD, Major B, Kimpinski K et al (2014) Skeletal muscle morphology and contractile function in relation to muscle denervation in diabetic neuropathy. J Appl Physiol 116:545–552. doi:10.1152/japplphysiol.01139.2013

    Article  CAS  PubMed  Google Scholar 

  10. Andreassen CS, Jensen JM, Jakobsen J et al (2014) Striated muscle fiber size, composition, and capillary density in diabetes in relation to neuropathy and muscle strength. J Diabetes 6:462–471. doi:10.1111/1753-0407.12124

    Article  PubMed  Google Scholar 

  11. Andersen H, Gadeberg PC, Brock B, Jakobsen J (1997) Muscular atrophy in diabetic neuropathy: a stereological magnetic resonance imaging study. Diabetologia 40:1062–1069. doi:10.1007/s001250050788

    Article  CAS  PubMed  Google Scholar 

  12. Sacchetti MS, Balducci S, Bazzucchi I et al (2013) Neuromuscular dysfunction in diabetes: role of nerve impairment and training status. Med Sci Sports Exerc 45:52–59. doi:10.1249/MSS.0b013e318269f9bb

    Article  PubMed  Google Scholar 

  13. Almeida S, Riddell MC, Cafarelli E (2008) Slower conduction velocity and motor unit discharge frequency are associated with muscle fatigue during isometric exercise in type 1 diabetes mellitus. Muscle Nerve 37:231–240. doi:10.1002/mus.20919

    Article  CAS  PubMed  Google Scholar 

  14. Andersen H (1998) Muscular endurance in long-term IDDM patients. Diabetes Care 21:604–609. doi:10.2337/diacare.21.4.604

    Article  CAS  PubMed  Google Scholar 

  15. Tesfaye S, Boulton AJM, Dyck PJ et al (2010) Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33:2285–2293. doi:10.2337/dc10-1303

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ainsworth BE, Haskell WL, White MC et al (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32(suppl.):s498–s504

  17. Orlando G, Balducci S, Bazzucchi I et al (2016) Muscle fatigability in type 2 diabetes. Diabetes Metab Res Rev 64:319–322. doi:10.1002/dmrr.2821

    Google Scholar 

  18. Sayer AA, Dennison EM, Syddall HE et al (2005) Type 2 diabetes, muscle strength, and impaired physical function: the tip of the iceberg? Diabetes Care 28:2541–2542. doi:10.2337/diacare.28.10.2541

    Article  PubMed  Google Scholar 

  19. Ijzerman TH, Schaper NC, Melai T et al (2012) Lower extremity muscle strength is reduced in people with type 2 diabetes, with and without polyneuropathy, and is associated with impaired mobility and reduced quality of life. Diabetes Res Clin Pract 95:345–351. doi:10.1016/j.diabres.2011.10.026

    Article  PubMed  Google Scholar 

  20. Schofield KL, Rehrer NJ, Perry TL et al (2012) Insulin and fiber type in the offspring of T2DM subjects with resistance training and detraining. Med Sci Sports Exerc 44:2331–2339. doi:10.1249/MSS.0b013e318268008f

    Article  CAS  PubMed  Google Scholar 

  21. Allen MD, Kimpinski K, Doherty TJ, Rice CL (2015) Decreased muscle endurance associated with diabetic neuropathy may be attributed partially to neuromuscular transmission failure. J Appl Physiol 118:1014–1022. doi:10.1152/japplphysiol.00441.2014

    Article  PubMed  PubMed Central  Google Scholar 

  22. Orlando G, Balducci S, Bazzucchi I et al (2016) Neuromuscular dysfunction in type 2 diabetes: underlying mechanisms and effect of resistance training. Diabetes Metab Res Rev 32:40–50. doi:10.1002/dmrr.2658

    Article  PubMed  Google Scholar 

  23. Andersen H (1998) Association of muscle strength and electrophysiological measures of reinnervation in diabetic neuropathy. Muscle Nerve 21(12):1647–1654. doi:10.1002/(SICI)1097-4598(199812)21:12<1647:AID-MUS4>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  24. Allen MD, Kimpinski K, Doherty TJ, Rice CL (2014) Clinical neurophysiology length dependent loss of motor axons and altered motor unit properties in human diabetic polyneuropathy. Clin Neurophysiol 125:836–843. doi:10.1016/j.clinph.2013.09.037

    Article  PubMed  Google Scholar 

  25. Hilton TN, Tuttle LJ, Bohnert KL et al (2008) Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: association with performance and function. Phys Ther 88:1336–1344. doi:10.2522/ptj.20080079

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bittel DC, Bittel AJ, Tuttle LJ et al (2014) Adipose tissue content, muscle performance and physical function in obese adults with type 2 diabetes mellitus and peripheral neuropathy. J Diabetes Complicat 29:250–257. doi:10.1016/j.jdiacomp.2014.11.003

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ramamurthy B, Höök P, Jones AD, Larsson L (2001) Changes in myosin structure and function in response to glycation. FASEB J 15:2415–2422. doi:10.1096/fj.01-0183com

    Article  CAS  PubMed  Google Scholar 

  28. Ramamurthy B, Jones AD, Larsson L (2003) Glutathione reverses early effects of glycation on myosin function. Am J Physiol Cell Physiol 285:C419–C424. doi:10.1152/ajpcell.00502.2002

    Article  CAS  PubMed  Google Scholar 

  29. Ramamurthy B, Larsson L (2013) Detection of an aging-related increase in advanced glycation end products in fast- and slow-twitch skeletal muscles in the rat. Biogerontology 14:293–301. doi:10.1007/s10522-013-9430-y

    Article  CAS  PubMed  Google Scholar 

  30. Coleman SK, Rebalka IA, Souza DMD et al (2015) Skeletal muscle as a therapeutic target for delaying type 1 diabetic complications. World J Diabetes 6:1323–1336. doi:10.4239/wjd.v6.i17.1323

    Article  PubMed  PubMed Central  Google Scholar 

  31. Eshima H, Poole DC, Kano Y (2014) In vivo calcium regulation in diabetic skeletal muscle. Cell Calcium 56:381–389. doi:10.1016/j.ceca.2014.08.008

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Sacchetti.

Ethics declarations

Conflict of interest

None.

Ethical standard

All procedures were in accordance with the ethical standards of the institutional and national research committee and with the 1975 Helsinki Declaration and its later amendments.

Human and animal rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Managed by Massimo Porta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlando, G., Balducci, S., Bazzucchi, I. et al. The impact of type 1 diabetes and diabetic polyneuropathy on muscle strength and fatigability. Acta Diabetol 54, 543–550 (2017). https://doi.org/10.1007/s00592-017-0979-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-017-0979-9

Keywords

Navigation