Skip to main content

Advertisement

Log in

Harnessing the immunological properties of stem cells as a therapeutic option for diabetic nephropathy

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Diabetic nephropathy is the leading and possibly the most devastating complication of diabetes, with a prevalence ranging from 25 to 40 % in diabetic individuals, and as such represents an important challenge for public health worldwide. As a major cause of end-stage renal disease, diabetic nephropathy also accounts for a large proportion of deaths in diabetic individuals. To date, therapeutic options for overt diabetic nephropathy include medical interventions to reduce blood glucose levels and to control blood pressure and proteinuria. Recent evidence suggests a strong role for inflammation in the development and progression of diabetic nephropathy. Various immune cells, cytokines and chemokines have been implicated in the onset of diabetic nephropathy, while immune-related transcription factors and adhesion molecules have been correlated with the establishment of a renal proinflammatory microenvironment. Both inflammation and immune activation may promote severe distress in the kidney, with subsequent increased local fibrosis, ultimately leading to the development of end-stage renal disease. Stem cells are undifferentiated cells capable of regenerating virtually any organ or tissue and bearing important immunoregulatory and anti-inflammatory properties. Due to the aforementioned considerations, significant interest has been ignited with regard to the use of stem cells as novel therapeutics for diabetic nephropathy. Here, we will be examining in detail how anti-inflammatory properties of different populations of stem cells may offer novel therapy for the treatment of diabetic nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Williams WW et al (2012) Association testing of previously reported variants in a large case-control meta-analysis of diabetic nephropathy. Diabetes 61(8):2187–2194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Gross JL et al (2005) Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 28(1):164–176

    Article  PubMed  Google Scholar 

  3. U.S. Renal Data System. USRDS 2010 Annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States. Bethesda, MD, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2010

  4. Nathan DM et al (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353(25):2643–2653

    Article  PubMed  Google Scholar 

  5. National Kidney F (2012) KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis 60(5):850–86

  6. Astorri E et al (1997) Left ventricular function in insulin-dependent and in non-insulin-dependent diabetic patients: radionuclide assessment. Cardiology 88(2):152–155

    Article  CAS  PubMed  Google Scholar 

  7. Himmelfarb J, Tuttle KR (2013) New therapies for diabetic kidney disease. N Engl J Med 369(26):2549–2550

    Article  CAS  PubMed  Google Scholar 

  8. Paroni R et al (2005) Determination of asymmetric and symmetric dimethylarginines in plasma of hyperhomocysteinemic subjects. Amino Acids 28(4):389–394

    Article  CAS  PubMed  Google Scholar 

  9. Atkins RC, Zimmet P (2010) Diabetic kidney disease: act now or pay later. Acta Diabetol 47(1):1–4

    Article  PubMed  Google Scholar 

  10. Navarro-Gonzalez JF et al (2011) Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 7(6):327–340

    Article  CAS  PubMed  Google Scholar 

  11. Macisaac RJ, Ekinci EI, Jerums G (2014) Markers of and risk factors for the development and progression of diabetic kidney disease. Am J Kidney Dis 63(2 Suppl 2):S39–S62

    Article  PubMed  Google Scholar 

  12. Galkina E, Ley K (2006) Leukocyte recruitment and vascular injury in diabetic nephropathy. J Am Soc Nephrol 17(2):368–377

    Article  CAS  PubMed  Google Scholar 

  13. Niewczas MA et al (2012) Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J Am Soc Nephrol 23(3):507–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Mima A, Qi W, King GL (2012) Implications of treatment that target protective mechanisms against diabetic nephropathy. Semin Nephrol 32(5):471–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Caramori ML et al (2002) Cellular basis of diabetic nephropathy: 1. Study design and renal structural-functional relationships in patients with long-standing type 1 diabetes. Diabetes 51(2):506–513

    Article  CAS  PubMed  Google Scholar 

  16. Fiorina P et al (2012) 31P-magnetic resonance spectroscopy (31P-MRS) detects early changes in kidney high-energy phosphate metabolism during a 6-month Valsartan treatment in diabetic and non-diabetic kidney-transplanted patients. Acta Diabetol 49(Suppl 1):S133–S139

    Article  PubMed  Google Scholar 

  17. Maffi P et al (2007) Kidney function after islet transplant alone in type 1 diabetes: impact of immunosuppressive therapy on progression of diabetic nephropathy. Diabetes Care 30(5):1150–1155

    Article  CAS  PubMed  Google Scholar 

  18. Bennett WM, Henrich WL, Stoff JS (1996) The renal effects of nonsteroidal anti-inflammatory drugs: summary and recommendations. Am J Kidney Dis 28(1 Suppl 1):S56–S62

    Article  CAS  PubMed  Google Scholar 

  19. Francese R, Fiorina P (2010) Immunological and regenerative properties of cord blood stem cells. Clin Immunol 136(3):309–322

    Article  CAS  PubMed  Google Scholar 

  20. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  21. Fiorina P, Voltarelli J, Zavazava N (2011) Immunological applications of stem cells in type 1 diabetes. Endocr Rev 32(6):725–754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Abdi R et al (2008) Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57(7):1759–1767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Bussolati B et al (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166(2):545–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Rojas-Rios P, Gonzalez-Reyes A (2014) The plasticity of stem cell niches: A general property behind tissue homeostasis and repair. Stem Cells 32(4):852–859

  25. D’Addio F, VVA, Ben Nasr M, Franek E, Zhu D, Li L, Ning G, Snarski E, Fiorina P (2014) Autologous non-myeloablative hematopoietic stem cell transplantation in new onset type 1 diabetes: a multicenter analysis. Diabetes (in press)

  26. Doria A, Niewczas MA, Fiorina P (2012) Can existing drugs approved for other indications retard renal function decline in patients with type 1 diabetes and nephropathy? Semin Nephrol 32(5):437–444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Fernandez-Real JM et al (2012) Structural damage in diabetic nephropathy is associated with TNF-alpha system activity. Acta Diabetol 49(4):301–305

    Article  CAS  PubMed  Google Scholar 

  28. Lim AK, Tesch GH (2012) Inflammation in diabetic nephropathy. Mediators Inflamm 2012:146–154

    Article  Google Scholar 

  29. Abbate M, Zoja C, Remuzzi G (2006) How does proteinuria cause progressive renal damage? J Am Soc Nephrol 17(11):2974–2984

    Article  CAS  PubMed  Google Scholar 

  30. RamachandraRao SP et al (2009) Pirfenidone is renoprotective in diabetic kidney disease. J Am Soc Nephrol 20(8):1765–1775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Remuzzi G, Benigni A, Remuzzi A (2006) Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 116(2):288–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Yu CC et al (2013) Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 369(25):2416–2423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Fiorina P et al (2014) Role of Podocyte B7-1 in Diabetic Nephropathy. J Am Soc Nephrol [Epub ahead of print]

  34. Sharma K et al (1996) Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes 45(4):522–530

    Article  CAS  PubMed  Google Scholar 

  35. Lim AK et al (2009) Antibody blockade of c-fms suppresses the progression of inflammation and injury in early diabetic nephropathy in obese db/db mice. Diabetologia 52(8):1669–1679

    Article  CAS  PubMed  Google Scholar 

  36. Kanamori H et al (2007) Inhibition of MCP-1/CCR2 pathway ameliorates the development of diabetic nephropathy. Biochem Biophys Res Commun 360(4):772–777

    Article  CAS  PubMed  Google Scholar 

  37. Adhikary L et al (2004) Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy. Diabetologia 47(7):1210–1222

    Article  CAS  PubMed  Google Scholar 

  38. Sanchez AP, Sharma K (2009) Transcription factors in the pathogenesis of diabetic nephropathy. Expert Rev Mol Med 11:e13

    Article  PubMed  Google Scholar 

  39. Wada J, Makino H (2013) Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond) 124(3):139–152

    Article  CAS  Google Scholar 

  40. Okada S et al (2003) Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes. Diabetes 52(10):2586–2593

    Article  CAS  PubMed  Google Scholar 

  41. Lin M et al (2012) Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J Am Soc Nephrol 23(1):86–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Drukker M et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 99(15):9864–9869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Drukker M et al (2006) Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 24(2):221–229

    Article  PubMed  Google Scholar 

  44. Bonde S, Zavazava N (2006) Immunogenicity and engraftment of mouse embryonic stem cells in allogeneic recipients. Stem Cells 24(10):2192–2201

    Article  CAS  PubMed  Google Scholar 

  45. Fandrich F et al (2002) Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning. Nat Med 8(2):171–178

    Article  CAS  PubMed  Google Scholar 

  46. Blum B, Benvenisty N (2009) The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle 8(23):3822–3830

    Article  CAS  PubMed  Google Scholar 

  47. Little MH (2006) Regrow or repair: potential regenerative therapies for the kidney. J Am Soc Nephrol 17(9):2390–2401

    Article  PubMed  Google Scholar 

  48. Riolobos L et al (2013) HLA engineering of human pluripotent stem cells. Mol Ther 21(6):1232–1241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Cohen DE, Melton D (2011) Turning straw into gold: directing cell fate for regenerative medicine. Nat Rev Genet 12(4):243–252

    Article  CAS  PubMed  Google Scholar 

  50. Morigi M et al (2010) Life-sparing effect of human cord blood-mesenchymal stem cells in experimental acute kidney injury. Stem Cells 28(3):513–522

    CAS  PubMed  Google Scholar 

  51. Chang JW et al (2011) Therapeutic effects of umbilical cord blood-derived mesenchymal stem cell transplantation in experimental lupus nephritis. Cell Transpl 20(2):245–257

    Article  Google Scholar 

  52. Masoad RE et al (2012) Effect of mononuclear cells versus pioglitazone on streptozotocin-induced diabetic nephropathy in rats. Pharmacol Rep 64(5):1223–1233

    Article  CAS  PubMed  Google Scholar 

  53. Gammaitoni L et al (2004) Elevated telomerase activity and minimal telomere loss in cord blood long-term cultures with extensive stem cell replication. Blood 103(12):4440–4448

    Article  CAS  PubMed  Google Scholar 

  54. Romagnani P, Lasagni L, Remuzzi G (2013) Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat Rev Nephrol 9(3):137–146

    Article  CAS  PubMed  Google Scholar 

  55. Lin F (2008) Renal repair: role of bone marrow stem cells. Pediatr Nephrol 23(6):851–861

    Article  PubMed  Google Scholar 

  56. Romagnani P, Remuzzi G (2013) Renal progenitors in non-diabetic and diabetic nephropathies. Trends Endocrinol Metab 24(1):13–20

    Article  CAS  PubMed  Google Scholar 

  57. Chhabra P, Brayman KL (2009) The use of stem cells in kidney disease. Curr Opin Organ Transpl 14(1):72–78

    Article  Google Scholar 

  58. Ezquer FE et al (2008) Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transpl 14(6):631–640

    Article  CAS  Google Scholar 

  59. Zhou H et al (2009) Mesenchymal stem cells transplantation mildly ameliorates experimental diabetic nephropathy in rats. Chin Med J (Engl) 122(21):2573–2579

    Google Scholar 

  60. Wang S et al (2013) Mesenchymal stem cells ameliorate podocyte injury and proteinuria in a type 1 diabetic nephropathy rat model. Biol Blood Marrow Transpl 19:538–546

    Article  Google Scholar 

  61. Luz-Crawford P et al (2012) Mesenchymal stem cells repress Th17 molecular program through the PD-1 pathway. PLoS One 7(9):e45272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Spaggiari GM et al (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111(3):1327–1333

    Article  CAS  PubMed  Google Scholar 

  63. Krampera M et al (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101(9):3722–3729

    Article  CAS  PubMed  Google Scholar 

  64. D’Addio F et al (2011) The link between the PDL1 costimulatory pathway and Th17 in fetomaternal tolerance. J Immunol 187(9):4530–4541

    Article  PubMed Central  PubMed  Google Scholar 

  65. Guleria I et al (2007) Mechanisms of PDL1-mediated regulation of autoimmune diabetes. Clin Immunol 125(1):16–25

    Article  CAS  PubMed  Google Scholar 

  66. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822

    Article  CAS  PubMed  Google Scholar 

  67. Fang Y et al (2012) Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway. Int J Mol Med 30(1):85–92

    CAS  PubMed  Google Scholar 

  68. Lee PY et al (2012) Induced pluripotent stem cells without c-Myc attenuate acute kidney injury via down-regulating the signaling of oxidative stress and inflammation in ischemia-reperfusion rats. Cell Transpl 21:2569–2585

    Article  Google Scholar 

  69. Suarez-Alvarez B et al (2010) Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells. PLoS One 5(4):e10192

    Article  PubMed Central  PubMed  Google Scholar 

  70. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  71. Taylor CJ, Bolton EM, Bradley JA (2011) Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond B Biol Sci 366(1575):2312–2322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  73. Pera MF (2011) Stem cells: the dark side of induced pluripotency. Nature 471(7336):46–47

    Article  CAS  PubMed  Google Scholar 

  74. Liang J et al (2010) Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Ann Rheum Dis 69(8):1423–1429

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Paolo Fiorina is the recipient of a JDRF Career Development Award, an ASN Career Development Award and an ADA Mentor-based Fellowship grant. P.F. is also supported by a Translational Research Program (TRP) grant from Boston Children’s Hospital, a Harvard Stem Cell Institute grant (“Diabetes Program” DP-0123-12-00) and an Italian Ministry of Health grant (RF-2010-2303119, RF-2010-2314794 and RF-FSR-2008-1213704). Francesca D’Addio is the recipient of an Italian Scientists and Scholars of North America Foundation (ISSNAF)-Fondazione Marche Fellowship.

Conflict of interest

Paolo Fiorina discloses Sorgente S.r.l stock ownership and Otsuka grant funding. Francesca D’Addio, Alessio Trevisani, Moufida Ben Nasr, Roberto Bassi, Basset El Essawy, Reza Abdi, Antonio Secchi declare that they have no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human subjects performed by the any of the authors. Animal studies were conducted in accordance with institutional and National Institutes of Health guidelines and Institutional Animal Care and Use Committee (IACUC) approval.

Statement of informed consent

We would like to mention that there are no patients in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Fiorina.

Additional information

Managed by Massimo Porta.

Francesca D’Addio and Alessio Trevisani have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Addio, F., Trevisani, A., Ben Nasr, M. et al. Harnessing the immunological properties of stem cells as a therapeutic option for diabetic nephropathy. Acta Diabetol 51, 897–904 (2014). https://doi.org/10.1007/s00592-014-0603-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-014-0603-1

Keywords

Navigation