Skip to main content
Log in

Disproportionately elevated proinsulinemia is observed at modestly elevated glucose levels within the normoglycemic range

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

We aimed to evaluate disproportional proinsulinemia in the pre-diabetic state by analyzing the cross-sectional differences between proinsulin (PI) ratios across the entire range of fasting and 2-h plasma glucose. The study sample was 1,016 participants in the insulin resistance atherosclerosis study, who had no previous diagnosis of diabetes. Insulin sensitivity index (SI) and acute insulin response (AIR) were measured by the frequently sampled intravenous glucose tolerance test. Fasting intact and split PI-to-insulin ratios (PI/I, SPI/I), intact and split PI-to-C-peptide ratios (PI/C-pep, SPI/C-pep), and SI-adjusted AIR were assessed as a function of fasting and 2-h glucose levels. SI-adjusted AIR was decreased (fasting glucose 96–98 mg/dl; 2-h glucose 120–131 mg/dl) and SPI/C-pep increased at modestly elevated fasting glucose and 2-h glucose within the normal glucose tolerance range (fasting glucose 96–98 mg/dl; 2-h glucose 132–142 mg/dl). PI/I was not increased until plasma glucose values were in the diabetic range of fasting glucose (>126 mg/dl) or the impaired glucose tolerance range of 2-h glucose (143–156 mg/dl). SPI/I and PI/C-pep as a function of fasting and 2-h glucose were situated between the curves for SPI/C-pep and PI/I. In conclusion, inappropriate amounts of PI and conversion intermediaries are demonstrated at modestly elevated glucose levels within the normoglycemic range. Ratios that use SPI in the numerator or C-pep in the denominator (and especially SPI/C-pep) are more sensitive to early glycemic excursions than PI/I. Disordered processing of PI may accompany derangements in early insulin secretory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kanat M, Mari A, Norton L, Winnier D, DeFronzo RA, Jenkinson C, Abdul-Ghani MA (2012) Distinct β-cell defects in impaired fasting glucose and impaired glucose tolerance. Diabetes 61:447–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Meyer C, Pimenta W, Woerle HJ, Van Haeften T, Szoke E, Mitrakou A, Gerich J (2006) Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care 29:1909–1914

    Article  CAS  PubMed  Google Scholar 

  3. Bergman RN, Finegood DT, Kahn SE (2002) The evolution of beta-cell dysfunction and insulin resistance in type 2 diabetes. Eur J Clin Invest 32(Suppl 3):S35–S45

    Article  Google Scholar 

  4. Festa A, Williams K, Hanley AJ, Haffner SM (2008) Beta-cell dysfunction in subjects with impaired glucose tolerance and early type 2 diabetes: comparison of surrogate markers with first-phase insulin secretion from an intravenous glucose tolerance test. Diabetes 57:1638–1644

    Article  CAS  PubMed  Google Scholar 

  5. Kahn SE, Halban PA (1997) Release of incompletely processed proinsulin is the cause of disproportionate proinsulinemia of NIDDM. Diabetes 46:1725–1732

    Article  CAS  PubMed  Google Scholar 

  6. Davies MJ, Rayman G, Gray IP, Day JL, Hales CN (1993) Insulin deficiency and increased plasma concentrations of intact and 32/33 split proinsulin in subjects with impaired glucose tolerance. Diabet Med 10:313–320

    Article  CAS  PubMed  Google Scholar 

  7. Hanley AJ, D’Agostino R Jr, Wagenknecht LE, Saad MF, Savage PJ, Bergman R, Haffner SM (2002) Increased proinsulin levels and decreased acute insulin response independently predict the incidence of type 2 diabetes in the Insulin Resistance Atherosclerosis Study. Diabetes 51:1263–1270

    Article  CAS  PubMed  Google Scholar 

  8. Zethelius B, Hales CN, Lithell HO, Berne C (2004) Insulin resistance, impaired early insulin response, and insulin propeptides as predictors of the development of type 2 diabetes: a population-based, 7-year follow-up study in 70-year-old men. Diabetes Care 27:1433–1438

    Article  CAS  PubMed  Google Scholar 

  9. Nijpels G, Popp-Snijders C, Kostense PJ, Bouter LM, Heine RJ (1996) Fasting proinsulin and 2-h post-load glucose levels predict the conversion to NIDDM in subjects with impaired glucose tolerance: the Hoorn Study. Diabetologia 39:113–118

    CAS  PubMed  Google Scholar 

  10. Mykkanen L, Haffner SM, Kuusisto J, Pyorala K, Hales CN, Laakso M (1995) Serum proinsulin levels are disproportionately increased in elderly prediabetic subjects. Diabetologia 38:1176–1182

    Article  CAS  PubMed  Google Scholar 

  11. Pradhan AD, Manson JE, Meigs JB, Rifai N, Buring JE, Liu S, Ridker PM (2003) Insulin, proinsulin, proinsulin:insulin ratio, and the risk of developing type 2 diabetes mellitus in women. Am J Med 114:438–444

    Article  CAS  PubMed  Google Scholar 

  12. Schulze MB, Solomon CG, Rifai N, Cohen RM, Sparrow J, Hu FB, Manson JE (2005) Hyperproinsulinaemia and risk of type 2 diabetes mellitus in women. Diabet Med 22:1178–1184

    Article  CAS  PubMed  Google Scholar 

  13. Kahn SE, Leonetti DL, Prigeon RL, Boyko EJ, Bergstrom RW, Fujimoto WY (1995) Proinsulin as a marker for the development of NIDDM in Japanese-American men. Diabetes 44:173–179

    Article  CAS  PubMed  Google Scholar 

  14. Wareham NJ, Byrne CD, Williams R, Day NE, Hales CN (1999) Fasting proinsulin concentrations predict the development of type 2 diabetes. Diabetes Care 22:262–270

    Article  CAS  PubMed  Google Scholar 

  15. Vauhkonen IK, Niskanen LK, Mykkanen L, Haffner SM, Uusitupa MI, Laakso M (2000) Hyperproinsulinemia is not a characteristic feature in the offspring of patients with different phenotypes of type II diabetes. Eur J Endocrinol 143:251–260

    Article  CAS  PubMed  Google Scholar 

  16. Goodarzi MO, Cui J, Chen YD, Hsueh WA, Guo X, Rotter JI (2011) Fasting insulin reflects heterogeneous physiological processes: role of insulin clearance. Am J Physiol Endocrinol Metab 301:E402–E408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bonora E, Zavaroni I, Coscilli C, Buttuvini V (1983) Decreased hepatic insulin extraction in subjects with mild glucose intolerance. Metabolism 32:438–446

    Article  CAS  PubMed  Google Scholar 

  18. Polonsky K, Jaspan J, Pugh W, Cohen D, Schneider M, Schwartz T, Moossa AR, Tager H, Rubenstein AH (1983) The metabolism of C-peptide in the dog. In vivo demonstration of the absence of hepatic extraction. J Clin Investig 72:1114–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Loopstra-Masters RC, Haffner SM, Lorenzo C, Wagenknecht LE, Hanley AJ (2011) Proinsulin-to-C-peptide ratio versus proinsulin-to-insulin ratio in the prediction of incident diabetes: the Insulin Resistance Atherosclerosis Study (IRAS). Diabetologia 54:3047–3054

    Article  CAS  PubMed  Google Scholar 

  20. Wagenknecht LE, Mayer EJ, Rewers M, Haffner S, Selby J, Borok GM, Henkin L, Howard G, Savage PJ, Saad MF, Bergman RN, Hamman R (1995) The Insulin Resistance Atherosclerosis Study: design, Objectives and Recruitment Results. Ann Epidemiol 5:464–472

    Article  CAS  PubMed  Google Scholar 

  21. Herbert V, Lau K, Gottlieb C, Bleicher S (1965) Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab 25:1375–1384

    Article  CAS  PubMed  Google Scholar 

  22. Haffner SM, Stern MP, Hazuda HP, Pugh J, Patterson J (1986) Hyperinsulinemia in a population at high risk for non-insulin dependent diabetes mellitus. N Engl J Med 315:220–224

    Article  CAS  PubMed  Google Scholar 

  23. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (2003) Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26:3160–3167

    Article  Google Scholar 

  24. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine. A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    CAS  PubMed  Google Scholar 

  25. Steiger JH (1980) Tests for comparing elements of a correlation matrix. Psychol Bull 87:245–251

    Article  Google Scholar 

  26. Mykkanen L, Haffner SM, Hales CN, Ronnemaa T, Laakso M (1997) The relation of proinsulin, insulin, and proinsulin-to-insulin ratio to insulin sensitivity and acute insulin response in normoglycemic subjects. Diabetes 46:1990–1995

    Article  CAS  PubMed  Google Scholar 

  27. Faber OK, Hagen C, Binder C, Markussen J, Naithani VK, Blix PM, Kuzuya H, Horwitz DL, Rubenstein AH, Rossing N (1978) Kinetics of human connecting peptide in normal and diabetic subjects. J Clin Investig 62:197–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Tura A, Pacini G, Kautzky-Willer A, Ludvik B, Prager R, Thomaseth K (2003) Basal and dynamic proinsulin–insulin relationship to assess beta-cell function during OGTT in metabolic disorders. Am J Physiol Endocrinol Metab 285:E155–E162

    CAS  PubMed  Google Scholar 

  29. Rhodes CJ, Alarcón C (1994) What beta-cell defect could lead to hyperproinsulinemia in NIDDM? Some clues from recent advances made in understanding the proinsulin-processing mechanism. Diabetes 43:511–517

    Article  CAS  PubMed  Google Scholar 

  30. Alarcón C, Lincoln B, Rhodes CJ (1993) The biosynthesis of the subtilisin-related proprotein convertase PC3, but no that of the PC2 convertase, is regulated by glucose in parallel to proinsulin biosynthesis in rat pancreatic islets. J Biol Chem 268:4276–4280

    PubMed  Google Scholar 

  31. Halban PA (1994) Proinsulin processing in the regulated and the constitutive secretory pathway. Diabetologia 37(Suppl 2):S65–S72

    Article  CAS  PubMed  Google Scholar 

  32. Mooy JM, Grootenhuis PA, de Vries H, Kostense PJ, Popp-Snijders C, Bouter LM, Heine RJ (1996) Intra-individual variation of glucose, specific insulin and proinsulin concentrations measured by two oral glucose tolerance tests in a general Caucasian population: the Hoorn Study. Diabetologia 39:298–305

    Article  CAS  PubMed  Google Scholar 

  33. Weiss R, Caprio S, Trombetta M, Taksali SE, Tamborlane WV, Bonadonna R (2005) Beta-cell function across the spectrum of glucose tolerance in obese youth. Diabetes 54:1735–1743

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Heart, Lung, and Blood Institute Grants HL-47887, HL-47889, HL-47890, HL-47892, and HL-47902 and the General Clinical Research Centers Program (NCRR GCRC, M01 RR431, and M01 RR01346). None of the funding organizations had any role in study design, data collection and analysis, or preparation of the manuscript.

Conflict of interest

Carlos Lorenzo, Anthony J. Hanley, Marian J. Rewers and Steven M. Haffner declare they have no conflict of interest.

Human and Animal Rights

All the procedures were followed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed Consent

The IRAS protocol was approved by local institutional review committees, and all participants provided written informed consent prior to the inclusion in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Lorenzo.

Additional information

Communicated by Massimo Porta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenzo, C., Hanley, A.J., Rewers, M.J. et al. Disproportionately elevated proinsulinemia is observed at modestly elevated glucose levels within the normoglycemic range. Acta Diabetol 51, 617–623 (2014). https://doi.org/10.1007/s00592-014-0565-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-014-0565-3

Keywords

Navigation