Skip to main content
Log in

An alternative quadratic formula

  • Mathematik in der Lehre
  • Published:
Mathematische Semesterberichte Aims and scope Submit manuscript

Abstract

One would usually expect that a subject such as the quadratic equation which is known since Babylonian times would not offer any interesting new aspect today. It is, however, a feature of mathematics that one can always gain new insights by looking at an old topic from a new angle. A look back at the history reveals that the quadratic equation has indeed been repeatedly investigated in all epochs and cultures. The solution formulas for this equation are correspondingly numerous, although most of them are only little known. It may come as a surprise that here a further, particularly symmetric solution formula can be added to the catalogue of quadratic formulae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Mitternachtsformel or Mondscheinformel.

  2. in German “entlernen”. This anecdote was reported to the author by Ernst Specker.

  3. Alternatively, one may use \(x=iy\sqrt{\frac{c}{a}}\) to arrive again at the form \(y^{2}+dy-1=0\) like in the first case.

  4. If x is the true value and \(\overset{~}{x}\) its numerical approximation, the relative error is defined as \(\frac{\overset{~}{x}-x}{x}=\frac{\overset{~}{x}}{x}-1\).

References

  1. Ben-Menahem, A.: Historical encyclopedia of natural and mathematical sciences, vol. 1. Springer, Berlin, Heidelberg (2009)

    Book  Google Scholar 

  2. Casselman, B.: x, y and z. Notices Amer. Math. Soc. 62(2), 147 (2015)

    Google Scholar 

  3. Jørgen, C., Gallardo, L., Vaserstein, L., Wheland, E.: Solving quadratic equations over polynomial rings of characteristic two. Publ. Mat. 42(1), 131–142 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Descartes, R.: Discours de la Méthode. Imprimerie de Ian Maire (1637)

    MATH  Google Scholar 

  5. Eells, W.C.: Greek methods of solving quadratic equations. Amer. Math. Monthly 18(1), 3–14 (1911)

    Article  MathSciNet  Google Scholar 

  6. Forsythe, G.E.: Pitfalls in computation, or why a math book isn’t enough. Amer. Math. Monthly 77(9), 931–956 (1970)

    Article  MathSciNet  Google Scholar 

  7. Halbeisen, L., Hungerbühler, N., Lazarovich, N., Lederle, W., Lischka, M., Schumacher, S.: Forms of choice in ring theory. Results Math. (2019). https://doi.org/10.1007/s00025-018-0935-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Brioschi, F.: Sulla risoluzione delle equazioni del quinto grado. Ann. Mat. Pura Appl. 1, 256 (1858). https://doi.org/10.1007/BF03197334

    Article  Google Scholar 

  9. Herz-Fischler, R.: What are propositions 84 and 85 of Euclid’s data all about? Hist. Math. 11, 86–91 (1984)

    Article  MathSciNet  Google Scholar 

  10. Høyrup, J.: Lengths, widths, surfaces: a portrait of old Babylonian algebra and its kin. Sources and studies in the history of mathematics and physical sciences. (2002)

    Book  Google Scholar 

  11. Klein, F.: Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade. Birkhäuser Verlag, Basel (1993). Reprint of the 1884 original, edited, with an introduction and commentary by Peter Slodowy.

    Book  Google Scholar 

  12. Matthiessen, L.: Grundzüge der antiken und modernen Algebra der literalen Gleichungen. B.G. Teubner (1878)

    MATH  Google Scholar 

  13. Muller, D.E.: A method for solving algebraic equations using an automatic computer. Math. Tables Aids Comput. 10, 208–215 (1956)

    Article  MathSciNet  Google Scholar 

  14. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in Fortran 77, 2nd edn. Fortran numerical recipes, vol. 1. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  15. Rāshid, R., Morelon, R.: Encyclopedia of the history of Arabic science, vol. 2. Routledge, London, New York (1996)

    Book  Google Scholar 

  16. Serway, R.A., Vuille, C., Faughn, J.S.: College physics. Brooks/Cole Cengage Learning, Belmont (2009)

    Google Scholar 

  17. van der Waerden, B.L.: Science awakening I. Noordhoff (1954)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Hans Peter Dreyer for pointing out to him the nice exercise of the falling stone, Jacques Gélinas for the remark about the numerical stability, and Klaus Volkert for pointing out the wonderful book [12] of Mattheissen. The author is also grateful for the helpful remarks and hints of the referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Hungerbühler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hungerbühler, N. An alternative quadratic formula. Math Semesterber 67, 85–95 (2020). https://doi.org/10.1007/s00591-019-00262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00591-019-00262-3

Keywords

Mathematics Subject Classification

Navigation