Skip to main content

Advertisement

Log in

Management of giant cell tumors of the distal radius: a systematic review and meta-analysis

  • General Review
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Purpose

The treatment of giant cell tumors (GCT) of the distal radius remains challenging, with no consensus on the optimal surgical management. Surgical management remains the mainstay of treatment with options including intralesional curettage and en-bloc resection with reconstruction. The objective of this systematic review and meta-analysis was to evaluate and compare the outcomes of these two procedures.

Methods

Using OVID-Medline and Embase databases, a systematic literature search was performed. Comparative studies, assessing intralesional curettage and en-bloc resection in patients with GCTs of the distal radius, were included. Data regarding rates of local recurrence, metastasis, overall complications, and functional outcomes, were collected and analyzed. The ROBINS-I tool was utilized for risk of bias appraisal within each study outcome.

Results

Thirteen studies (n = 373 patients) reporting on 191 intralesional curettage procedures and 182 en-bloc resections were included in the analysis. The average age of participants was 31.9 (SD ± 2.4) years and average follow-up was 7.1 (SD ± 3.6) years. Patients that underwent intralesional curettage were more likely to develop local recurrence (Risk Ratio (RR) 3.3, 95% CI, [2.1, 5.4], p < 0.00001) when compared to patients that underwent en-bloc resection. In Campanacci grade 3 lesions, the risk for local recurrence was 5.9 (95% CI, [2.2, 16.3], p = 0.0006) times higher in patients that received intralesional curettage. Patients that underwent intralesional curettage showed an 84% reduction in the relative risk of developing overall complications compared to en-bloc resection (95% CI, [0.1, 0.4], p < 0.00001), and a larger decrease in Visual Analog Scale and lower Disabilities of the Arm, Shoulder, and Hand (DASH) scores (p < 0.00001). Risk ratio for developing a local recurrence, with PMMA versus bone graft following an intralesional procedure was not significant (RR 1.2, 95% CI, [0.6, 2.6], p = 0.62).

Conclusions

In the surgical management of GCT of the distal radius, intralesional curettage increased local recurrence compared to en-bloc resection with reconstruction, particularly in grade 3 tumors. However, it led to significantly fewer operative complications, lower pain scores, and improved functional outcomes compared to en-bloc resection. Both treatment options remain relevant in the contemporary management of GCTs of the distal radius. Surgical decision making should include both patient and tumor factors when determining the optimal treatment strategy for these patients.

Level 3 Evidence

Meta-analysis of Level 3 studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sobti A, Agrawal P, Agarwala S, Agarwal M (2016) Giant cell tumor of bone-an overview. Arch bone Jt Surg 4:2–9

    PubMed  PubMed Central  Google Scholar 

  2. Broehm CJ, Inwards CY, Al-Ibraheemi A et al (2018) Giant cell tumor of bone in patients 55 years and older: a study of 34 patients. Am J Clin Pathol 149:222–233. https://doi.org/10.1093/ajcp/aqx155

    Article  PubMed  Google Scholar 

  3. Raskin KA, Schwab JH, Mankin HJ et al (2013) Giant cell tumor of bone. J Am Acad Orthop Surg 21:118–126. https://doi.org/10.5435/JAAOS-21-02-118

    Article  PubMed  Google Scholar 

  4. Deheshi BM, Jaffer SN, Griffin AM et al (2007) joint salvage for pathologic fracture of giant cell tumor of the lower extremity. Clin Orthop Relat Res 459:96–104

    Article  PubMed  Google Scholar 

  5. Turcotte RE, Wunder JS, Isler MH et al (2002) Giant cell tumor of long bone: a Canadian Sarcoma group study. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-200204000-00029

    Article  PubMed  Google Scholar 

  6. Mavrogenis AF, Igoumenou VG, Megaloikonomos PD et al (2017) Giant cell tumor of bone revisited. SICOT-J 3:54. https://doi.org/10.1051/sicotj/2017041

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ashford RU, Soper J, Stalley PD (2010) Beware the “giant cell tumour” of the distal radius. Eur J Orthop Surg Traumatol 20:109–111. https://doi.org/10.1007/s00590-009-0502-2

    Article  Google Scholar 

  8. Saikia KC, Borgohain M, Bhuyan SK et al (2010) Resection-reconstruction arthroplasty for giant cell tumor of distal radius. Indian J Orthop 44:327–332. https://doi.org/10.4103/0019-5413.65134

    Article  PubMed  PubMed Central  Google Scholar 

  9. Abuhejleh H, Wunder JS, Ferguson PC et al (2020) Extended intralesional curettage preferred over resection-arthrodesis for giant cell tumour of the distal radius. Eur J Orthop Surg Traumatol 30:11–17. https://doi.org/10.1007/s00590-019-02496-2

    Article  PubMed  Google Scholar 

  10. O’Donnell RJ, Springfield DS, Motwani HK et al (1994) Recurrence of giant-cell tumors of the long bones after curettage and packing with cement. J Bone Joint Surg Am 76:1827–1833. https://doi.org/10.2106/00004623-199412000-00009

    Article  PubMed  Google Scholar 

  11. Viswanathan S, Jambhekar NA (2010) Metastatic giant cell tumor of bone: are there associated factors and best treatment modalities? Clin Orthop Relat Res 468:827–833. https://doi.org/10.1007/s11999-009-0966-8

    Article  PubMed  Google Scholar 

  12. Klenke FM, Wenger DE, Inwards CY et al (2011) Giant cell tumor of bone: risk factors for recurrence. Clin Orthop Relat Res 469:591–599. https://doi.org/10.1007/s11999-010-1501-7

    Article  PubMed  Google Scholar 

  13. Tsukamoto S, Mavrogenis AF, Tanzi P et al (2020) Curettage as first surgery for bone giant cell tumor: adequate surgery is more important than oncology training or surgical management by high volume specialized teams. Eur J Orthop Surg Traumatol 30:3–9. https://doi.org/10.1007/s00590-019-02535-y

    Article  PubMed  Google Scholar 

  14. Pazionis TJC, Alradwan H, Deheshi BM et al (2013) A systematic review and meta-analysis of En-Bloc versus intralesional resection for giant cell tumor of bone of the distal radius. Open Orthop J 7:103–108. https://doi.org/10.2174/1874325001307010103

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu Y-P, Li K-H, Sun B-H (2012) Which treatment is the best for giant cell tumors of the distal radius? a meta-analysis. Clin Orthop Relat Res 470:2886–2894. https://doi.org/10.1007/s11999-012-2464-7

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu W, Wang B, Zhang S et al (2021) Wrist reconstruction after En bloc resection of bone tumors of the distal radius. Orthop Surg. https://doi.org/10.1111/os.12737

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barik S, Jain A, Ahmad S, Singh V (2020) Functional outcome in giant cell tumor of distal radius treated with excision and fibular arthroplasty: a case series. Eur J Orthop Surg Traumatol 30:1109–1117. https://doi.org/10.1007/s00590-020-02679-2

    Article  PubMed  Google Scholar 

  18. Errani C, Tsukamoto S, Leone G et al (2017) Higher local recurrence rates after intralesional surgery for giant cell tumor of the proximal femur compared to other sites. Eur J Orthop Surg Traumatol 27:813–819. https://doi.org/10.1007/s00590-017-1983-z

    Article  PubMed  Google Scholar 

  19. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Med 6:1–6. https://doi.org/10.1371/journal.pmed.1000097

    Article  Google Scholar 

  20. Higgins JP, Thomas J, Chandler J et al (2020) Cochrane handbook for systematic reviews of interventions version 6.1. Cochrane. Wiley, New York

    Google Scholar 

  21. Kang L, Manoso MW, Boland PJ et al (2010) Features of grade 3 giant cell tumors of the distal radius associated with successful intralesional treatment. J Hand Surg Am 35:1850–1857. https://doi.org/10.1016/j.jhsa.2010.07.010

    Article  PubMed  Google Scholar 

  22. Zou C, Lin T, Wang B et al (2019) Managements of giant cell tumor within the distal radius: a retrospective study of 58 cases from a single center. J bone Oncol 14:100211. https://doi.org/10.1016/j.jbo.2018.100211

    Article  PubMed  Google Scholar 

  23. Enneking WF, Dunham W, Gebhardt MC et al (1993) A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin Orthop Relat Res 286:241–246

    Article  Google Scholar 

  24. Davis AM, Wright JG, Williams JI et al (1996) Development of a measure of physical function for patients with bone and soft tissue sarcoma. Qual Life Res Int J Qual Life Asp Treat care Rehabil 5:508–516. https://doi.org/10.1007/BF00540024

    Article  CAS  Google Scholar 

  25. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135. https://doi.org/10.1186/1471-2288-14-135

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vander Griend RA, Funderburk CH (1993) The treatment of giant-cell tumors of the distal part of the radius. J Bone Joint Surg Am 75:899–908. https://doi.org/10.2106/00004623-199306000-00011

    Article  PubMed  Google Scholar 

  27. Sheth DS, Healey JH, Sobel M et al (1995) Giant cell tumor of the distal radius. J Hand Surg Am 20:432–440. https://doi.org/10.1016/S0363-5023(05)80102-9

    Article  CAS  PubMed  Google Scholar 

  28. Cheng CY, Shih HN, Hsu KY, Hsu RW (2001) Treatment of giant cell tumor of the distal radius. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-200102000-00026

    Article  PubMed  Google Scholar 

  29. Harness NG, Mankin HJ (2004) Giant-cell tumor of the distal forearm. J Hand Surg Am 29:188–193. https://doi.org/10.1016/j.jhsa.2003.11.003

    Article  PubMed  Google Scholar 

  30. Panchwagh Y, Puri A, Agarwal M et al (2007) Giant cell tumor-distal end radius: Do we know the answer? Indian J Orthop 41:139–145. https://doi.org/10.4103/0019-5413.32046

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wysocki RW, Soni E, Virkus WW et al (2015) Is intralesional treatment of giant cell tumor of the distal radius comparable to resection with respect to local control and functional outcome? Clin Orthop Relat Res 473:706–715. https://doi.org/10.1007/s11999-014-4054-3

    Article  PubMed  Google Scholar 

  32. Zhang J, Li Y, Li D et al (2016) Clinical effects of three surgical approaches for a giant cell tumor of the distal radius and ulna. Mol Clin Oncol 5:613–617. https://doi.org/10.3892/mco.2016.1031

    Article  PubMed  PubMed Central  Google Scholar 

  33. Atalay İB, Öztürk R, Şimşek M et al (2019) Giant cell tumors of bone localized in distal radius. Ann Clin Anal Med. https://doi.org/10.4328/ACAM

    Article  Google Scholar 

  34. Jiao Y-Q, Yang H-L, Xu L et al (2021) Surgical treatment of distal radius giant cell tumors. Hand Surg Rehabil 40:150–155. https://doi.org/10.1016/j.hansur.2020.12.004

    Article  PubMed  Google Scholar 

  35. Charest-Morin R, Fisher CG, Varga PP et al (2017) En bloc resection versus intralesional surgery in the treatment of giant cell tumor of the spine. Spine (Phila Pa 1976) 42:1383–1390

    Article  PubMed  Google Scholar 

  36. Su Y-P, Chen W-M, Chen T-H (2004) Giant-cell tumors of bone: an analysis of 87 cases. Int Orthop 28:239–243. https://doi.org/10.1007/s00264-004-0564-z

    Article  PubMed  PubMed Central  Google Scholar 

  37. AlSulaimani SA, Turcotte RE (2013) Iterative curettage is associated with local control in giant cell tumors involving the distal tibia. Clin Orthop Relat Res 471:2668–2674. https://doi.org/10.1007/s11999-013-2965-z

    Article  PubMed  PubMed Central  Google Scholar 

  38. Campanacci M, Baldini N, Boriani S, Sudanese A (1987) Giant-cell tumor of bone. J Bone Joint Surg Am 69:106–114

    Article  CAS  PubMed  Google Scholar 

  39. Wang T, Chan CM, Yu F et al (2017) Does wrist arthrodesis with structural iliac crest bone graft after wide resection of distal radius giant cell tumor result in satisfactory function and local control? Clin Orthop Relat Res 475:767–775. https://doi.org/10.1007/s11999-015-4678-y

    Article  PubMed  Google Scholar 

  40. Clarkson PW, Sandford K, Phillips AE et al (2013) Functional results following vascularized versus nonvascularized bone grafts for wrist arthrodesis following excision of giant cell tumors. J Hand Surg Am 38:935-940.e1. https://doi.org/10.1016/j.jhsa.2012.12.026

    Article  PubMed  Google Scholar 

  41. Szabo RM, Anderson KA, Chen JL (2006) Functional outcome of En bloc excision and osteoarticular allograft replacement with the Sauve-Kapandji procedure for Campanacci grade 3 giant-cell tumor of the distal radius. J Hand Surg Am 31:1340–1348. https://doi.org/10.1016/j.jhsa.2006.06.004

    Article  PubMed  Google Scholar 

  42. Weiss AC, Wiedeman GJ, Quenzer D et al (1995) Upper extremity function after wrist arthrodesis. J Hand Surg Am 20:813–817. https://doi.org/10.1016/s0363-5023(05)80437-x

    Article  CAS  PubMed  Google Scholar 

  43. Campanacci L, Sambri A, Medellin MR et al (2019) A new computerized tomography classification to evaluate response to denosumab in giant cell tumors in the extremities. Acta Orthop Traumatol Turc 53:376–380. https://doi.org/10.1016/j.aott.2019.05.005

    Article  PubMed  PubMed Central  Google Scholar 

  44. Parmeggiani A, Miceli M, Errani C, Facchini G (2021) State of the art and new concepts in giant cell tumor of bone: imaging features and tumor characteristics. Cancers (Basel). https://doi.org/10.3390/cancers13246298

    Article  PubMed  Google Scholar 

  45. Tsukamoto S, Mavrogenis AF, Kido A, Errani C (2021) Current concepts in the treatment of giant cell tumors of bone. Cancers (Basel). https://doi.org/10.3390/cancers13153647

    Article  PubMed  Google Scholar 

  46. Tsukamoto S, Mavrogenis AF, Tanaka Y et al (2021) Denosumab does not decrease local recurrence in giant cell tumor of bone treated with En bloc resection. Orthopedics 44:326–332. https://doi.org/10.3928/01477447-20211001-09

    Article  PubMed  Google Scholar 

  47. Xará-Leite F, Coutinho L, Fleming C et al (2020) Can denosumab cure giant cell tumors of the spine? A case report and literature review. Eur J Orthop Surg Traumatol 30:19–23. https://doi.org/10.1007/s00590-019-02554-9

    Article  PubMed  Google Scholar 

  48. Sahito B, Ali SME, Kumar D et al (2021) Role of denosumab before resection and reconstruction in giant cell tumors of bone: a single-centered retrospective cohort study. Eur J Orthop Surg Traumatol. https://doi.org/10.1007/s00590-021-03012-1

    Article  PubMed  Google Scholar 

  49. Traub F, Singh J, Dickson BC et al (2016) Efficacy of denosumab in joint preservation for patients with giant cell tumour of the bone. Eur J Cancer 59:1–12. https://doi.org/10.1016/j.ejca.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  50. Rutkowski P, Ferrari S, Grimer RJ et al (2015) Surgical downstaging in an open-label phase II trial of denosumab in patients with giant cell tumor of bone. Ann Surg Oncol 22:2860–2868. https://doi.org/10.1245/s10434-015-4634-9

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tsukamoto S, Mavrogenis AF, Tanzi P et al (2020) Denosumab for bone giant cell tumor of the distal radius. Orthopedics 43:284–291. https://doi.org/10.3928/01477447-20200721-03

    Article  PubMed  Google Scholar 

  52. Errani C, Tsukamoto S, Leone G et al (2018) Denosumab may increase the risk of local recurrence in patients with giant-cell tumor of bone treated with curettage. J Bone Joint Surg Am 100:496–504. https://doi.org/10.2106/JBJS.17.00057

    Article  PubMed  Google Scholar 

  53. Mozaffarian K, Modjallal M, Vosoughi AR (2018) Treatment of giant cell tumor of distal radius with limited soft tissue invasion: Curettage and cementing versus wide excision. J Orthop Sci 23:174–179. https://doi.org/10.1016/j.jos.2017.10.001

Download references

Funding

There was no funding or financial support utilized to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Koucheki.

Ethics declarations

Conflict of interest

Each author certifies that he or she has no commercial associations (e.g. Consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1 Sample search strategy

Search Terms

1. Giant cell tumor.mp. or exp Giant Cell Tumors/

2. Exp “Giant Cell Tumor of Bone”/ or giant cell tumour.mp

3. Distal radius.mp

4. 1 or 2

5. 3 and 4

6. Curettage.mp. or exp Curettage/

7. Intralesional excision.mp

8. Resection.mp

9. Wrist arthrodesis.mp

10. 6 or 7 or 8 or 9

11. 5 and 10

12. Limit 11 to (english language and humans)

Appendix 2 PRISMA flow diagram

figure a

Appendix 3 Additional characteristics of the included studies

 

Denosumab

Intra-operative adjuvants

Defect fill following curettage

Reconstruct following resection

Vander Griend [26]

No

High-speed burn, combined more recently with pulsating lavage and electrocautery + PMMA

Packing with cement

#6—non-vascularized autogenous bone graft from the fibula

#4—the adjacent ulna

#1—the iliac crest

Sheth [27]

No

Liquid nitrogen

#9—bone graft

#7—PMMA cement

#2—no form of reconstruction

The selection of bone for arthrodesis varied from tibial cortex, tricortical iliac crest, ulna, or fibula

Cheng [28]

No

High speed burr and phenol

#6—Autogenous cancellous bone graft, which was harvested from the iliac crest

#4—osteoarticular allograft

#2—fibular autograft

Harness [29]

No

Burring or phenolization and insertion of PMMA

#5—Autograft

#26—PMMA cement

NS

Panchwagh [30]

No

Phenol

#5—bone graft

#4—Cement

#2—no form of reconstruction

Proximal fibular graft wrist arthrodesis

Kang [21]

No

High-speed burring of the endosteal cavity, followed by irrigation, drying, and electrocautery coagulation ± liquid nitrogen

Antibiotic-laden PMMA cement

#5—Patients with vascularized or non-vascularized intercalary fibula autogenous graft arthrodesis

#1—Total wrist arthroplasty/allograft composite

Wysocki [31]

No

#20—Burr exteriorization

#10—Phenol

#12—Electrocautery

#4—Argon beam

#19—Polymethylmethacrylate

#1—Cancellous allograft

NS

#6—Non-vascularized fibular autograft

#3—Distal radius allograft

#3—Ulnar transposition

#3—Fibular allograft

Zhang [32]

No

95% ethanol was used to inactivate the tumor bed

Allogeneic bone graft/bone cement augmentation

Autologous fibular graft/allogeneic bone graft

Mozaffarian [53]

No

High-speed burring

Irrigation with saline and filling with bone cement

Proximal fibular autograft

Zou [22]

For 8 patients (21.1%), which were all Campanacci grade III, pre-operative denosumab was given subcutaneously at dosage of 120 mg on day 1, day 8, day 15 and day 29 as the loading dosage for the first month, 120 mg per four weeks thereafter.

Adjuvant treatments included high speed burring, iodine tincture, electrocautery.

#9—PMMA cement

#8—cancellous allograft

#4—autograft

#26—fibular autograft

#6—distal allograft

#5—PMMA

Atalay [33]

No

Adjuvant burr was applied to the lesion site with both cauterization and burring for grind lesions after curettage. Then 95% ethanol was used to neutralize the tumor site.

Autologous fibular graft, allogeneic bone graft segment, iliac graft or combinations

Allograft fibula + iliac autograft

Abuhejleh [9]

Two patients had a third recurrence, and the first was managed with denosumab only, while the second underwent repeated curettage with adjuvant radiotherapy

Burring followed by inconsistent use of adjuvant and followed with jet wash

#23—bone cement

#10—bone graft

#1—empty

#7—vascularized fibular autografts

#16—non-vascularized autograft

Jiao [34]

No

Microwave ablation

Bone cement filling

Non-vascularized autologous fibula reconstruction

Appendix 4 Funnel plots: (A) recurrence (B) complications (C) metastasis (D) recurrence in grade 3 tumors

figure b

Appendix 5 Forest plot depicting the comparison of rates of metastasis between intralesional curettage and en-bloc resection

figure c

Appendix 6 Description of types of complications

Study

Intralesional curettage

Resection

Sheth [27]

1/4 superficial skin necrosis and infection

3/4 collapse of the radiocarpal joint

3/4 non-union

1/4 traumatic fracture

Zou [22]

None

3/12 displacements of the wrist joint, including carpal subluxation (1 patient) and separation of the distal radioulnar joint (2 patients)

5/12 nonunions in cases of en-bloc resection with fibular autograft reconstruction

2/12 Fractures of bone graft

2/12 infections

Abuhejle [9]

None

4/7 Infections

1/7 malunion

1/7 non-union

1/7 fracture

Cheng [28]

None

None

Vander Griend [26]

None

Not Clear

Kang [21]

1/1 irritability of a branch of the superficial radial nerve

1/1 postoperative

pneumonia

Zhang [32]

None

1/4 of postoperative infection

2/4 implant breakage and postoperative fracture

1/4 nonunion

Mozaffarian [53]

None

None

Atalay [33]

1/1 fracture

1/1 nonunion

Appendix 7 Forest plot depicting the comparison of rates of recurrence between PMMA versus bone graft

figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koucheki, R., Gazendam, A., Perera, J. et al. Management of giant cell tumors of the distal radius: a systematic review and meta-analysis. Eur J Orthop Surg Traumatol 33, 759–772 (2023). https://doi.org/10.1007/s00590-022-03252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-022-03252-9

Keywords

Navigation