Skip to main content

Advertisement

Log in

Evaluation of Staphylococcus aureus and Candida albicans biofilms adherence to PEEK and titanium-alloy prosthetic spine devices

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Background

Titanium and polyether-ether-ketone (PEEK) interbody cages are commonly used for spine fusion. Few data are known about bacterial and yeast biofilms formation in these implants. The aim of this study was to compare Staphylococcus aureus and Candida albicans biofilm formation in the surface of two different interbody devices used routinely in spine surgery.

Methods

Six bodies of proof specimens of PEEK and titanium alloy were used for microbiological tests, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Experimental biofilm was produced with Staphylococcus aureus and Candida albicans, followed by quantitative analysis of planktonic cells and sessile cells. The comparison between the medians of biofilm quantification between the two models was performed using the Mann–Whitney test and considered the statistical difference for a p < 0.05.

Results

In the S. aureus model, in both planktonic and sessile cell counts, titanium-alloy samples showed lower values for colony forming units per milliliter (UFC/mL) (p < 0.05). The evaluation through the optic density of planktonic and sessile cells showed lower values in the titanium-alloy samples, however, only statistically significant in planktonic cell count (p < 0.05). The count of planktonic yeast cells in PEEK was similar to titanium-alloy samples, while the count of sessile yeast cells in titanium alloy was lower when compared to PEEK (p < 0.05).

Conclusion

Titanium-alloy models were associated with less staphylococcal and Candida biofilm formation when compared with PEEK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The data are 100% available. We can easily share if necessary.

References

  1. Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350(14):1422–1429. https://doi.org/10.1056/NEJMra035415

    Article  CAS  PubMed  Google Scholar 

  2. Patel H, Khoury H, Girgenti D, Welner S, Yu H (2017) Burden of surgical site infections associated with select spine operations and involvement of staphylococcus aureus. Surg Infect (Larchmt) 18(4):461–473. https://doi.org/10.1089/sur.2016.186

    Article  Google Scholar 

  3. Peleg AY, Hogan DA, Mylonakis E (2010) Medically important bacterial-fungal interactions. Nat Rev Microbiol 8(5):340–349. https://doi.org/10.1038/nrmicro2313

    Article  CAS  PubMed  Google Scholar 

  4. Pokorny D, Fulin P, Slouf M, Jahoda D, Landor I, Sosna A (2010) Polyetheretherketone (PEEK). Part II: application in clinical practice. Acta Chir Orthop Traumatol Cech 77(6):470–478

    CAS  PubMed  Google Scholar 

  5. Romling U, Balsalobre C (2012) Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 272(6):541–561. https://doi.org/10.1111/joim.12004

    Article  CAS  PubMed  Google Scholar 

  6. Sivasubramaniam V, Patel HC, Ozdemir BA, Papadopoulos MC (2015) Trends in hospital admissions and surgical procedures for degenerative lumbar spine disease in England: a 15-year time-series study. BMJ Open 5(12):e009011. https://doi.org/10.1136/bmjopen-2015-009011

    Article  PubMed  PubMed Central  Google Scholar 

  7. Street TL, Sanderson ND, Atkins BL, Brent AJ, Cole K, Foster D, McNally MA, Oakley S, Peto L, Taylor A, Peto TEA, Crook DW, Eyre DW (2017) Molecular diagnosis of orthopedic-device-related infection directly from sonication fluid by metagenomic sequencing. J Clin Microbiol 55(8):2334–2347. https://doi.org/10.1128/JCM.00462-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Terada A, Okuyama K, Nishikawa M, Tsuneda S, Hosomi M (2012) The effect of surface charge property on Escherichia coli initial adhesion and subsequent biofilm formation. Biotechnol Bioeng 109(7):1745–1754. https://doi.org/10.1002/bit.24429

    Article  CAS  PubMed  Google Scholar 

  9. Teughels W, Van Assche N, Sliepen I, Quirynen M (2006) Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 17(Suppl 2):68–81. https://doi.org/10.1111/j.1600-0501.2006.01353.x

    Article  PubMed  Google Scholar 

  10. Trampuz A, Piper KE, Jacobson MJ, Hanssen AD, Unni KK, Osmon DR, Mandrekar JN, Cockerill FR, Steckelberg JM, Greenleaf JF, Patel R (2007) Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 357(7):654–663. https://doi.org/10.1056/NEJMoa061588

    Article  CAS  PubMed  Google Scholar 

  11. De Bruyn H, Christiaens V, Doornewaard R, Jacobsson M, Cosyn J, Jacquet W (2000) Vervaeke S (2017) Implant surface roughness and patient factors on long-term peri-implant bone loss. Periodontol 73(1):218–227. https://doi.org/10.1111/prd.12177

    Article  Google Scholar 

  12. Li B, Logan BE (2004) Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surf B Biointerfaces 36(2):81–90. https://doi.org/10.1016/j.colsurfb.2004.05.006

    Article  CAS  PubMed  Google Scholar 

  13. Grenho L, Salgado CL, Fernandes MH, Monteiro FJ, Ferraz MP (2015) Antibacterial activity and biocompatibility of three-dimensional nanostructured porous granules of hydroxyapatite and zinc oxide nanoparticles–an in vitro and in vivo study. Nanotechnology 26(31):315101. https://doi.org/10.1088/0957-4484/26/31/315101

    Article  CAS  PubMed  Google Scholar 

  14. Bock RM, Jones EN, Ray DA, Sonny Bal B, Pezzotti G, McEntire BJ (2017) Bacteriostatic behavior of surface modulated silicon nitride in comparison to polyetheretherketone and titanium. J Biomed Mater Res A 105(5):1521–1534. https://doi.org/10.1002/jbm.a.35987

    Article  CAS  PubMed  Google Scholar 

  15. Webster TJ, Patel AA, Rahaman MN, Sonny Bal B (2012) Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium implants. Acta Biomater 8(12):4447–4454. https://doi.org/10.1016/j.actbio.2012.07.038

    Article  CAS  PubMed  Google Scholar 

  16. Burgers R, Hahnel S, Reichert TE, Rosentritt M, Behr M, Gerlach T, Handel G, Gosau M (2010) Adhesion of Candida albicans to various dental implant surfaces and the influence of salivary pellicle proteins. Acta Biomater 6(6):2307–2313. https://doi.org/10.1016/j.actbio.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  17. Tan JH, Cheong CK, Hey HWD (2021) Titanium (Ti) cages may be superior to polyetheretherketone (PEEK) cages in lumbar interbody fusion: a systematic review and meta-analysis of clinical and radiological outcomes of spinal interbody fusions using Ti versus PEEK cages. Eur Spine J. https://doi.org/10.1007/s00586-021-06748-w

    Article  PubMed  Google Scholar 

  18. Garcia D, Mayfield CK, Leong J, Deckey DG, Zega A, Glasser J, Daniels AH, Eberson C, Green A, Born C (2020) Early adherence and biofilm formation of Cutibacterium acnes (formerly Propionibacterium acnes) on spinal implant materials. Spine J 20(6):981–987. https://doi.org/10.1016/j.spinee.2020.01.001

    Article  PubMed  Google Scholar 

  19. Cieslinski J, Ribeiro VST, Kraft L, Suss PH, Rosa E, Morello LG, Pillonetto M, Tuon FF (2021) Direct detection of microorganisms in sonicated orthopedic devices after in vitro biofilm production and different processing conditions. Eur J Orthop Surg Traumatol. https://doi.org/10.1007/s00590-020-02856-3

    Article  PubMed  Google Scholar 

  20. Kratzig T, Mende KC, Mohme M, von Kroge S, Stangenberg M, Dreimann M, Westphal M, Weisselberg S, Eicker SO (2021) Bacterial adhesion characteristics on implant materials for intervertebral cages: titanium or PEEK for spinal infections? Eur Spine J. https://doi.org/10.1007/s00586-020-06705-z

    Article  PubMed  Google Scholar 

  21. Garcia DR, Deckey DG, Zega A, Mayfield C, Spake CSL, Emanuel T, Daniels A, Jarrell J, Glasser J, Born CT, Eberson CP (2020) Analysis of growth and biofilm formation of bacterial pathogens on frequently used spinal implant materials. Spine Deform 8(3):351–359. https://doi.org/10.1007/s43390-020-00054-z

    Article  PubMed  Google Scholar 

  22. Tuon FF, Cieslinski J, Ono AFM, Goto FL, Machinski JM, Mantovani LK, Kosop LR, Namba MS, Rocha JL (2019) Microbiological profile and susceptibility pattern of surgical site infections related to orthopaedic trauma. Int Orthop 43(6):1309–1313. https://doi.org/10.1007/s00264-018-4076-7

    Article  PubMed  Google Scholar 

  23. Marsh PD, Moter A (2000) Devine DA (2011) Dental plaque biofilms: communities, conflict and control. Periodontol 55(1):16–35. https://doi.org/10.1111/j.1600-0757.2009.00339.x

    Article  Google Scholar 

  24. Li Y, Guo T, Zhao J, Wang J (2013) Effects of polishing methods on Candida albicans adhesion on cast pure titanium surfaces. Implant Dent 22(5):546–551. https://doi.org/10.1097/ID.0b013e3182a03ce9

    Article  PubMed  Google Scholar 

  25. Bosshardt DD, Chappuis V (2000) Buser D (2017) Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontol 73(1):22–40. https://doi.org/10.1111/prd.12179

    Article  Google Scholar 

  26. Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7(2):277–281. https://doi.org/10.3201/eid0702.700277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    Article  CAS  Google Scholar 

  28. Dabdoub SM, Tsigarida AA, Kumar PS (2013) Patient-specific analysis of periodontal and peri-implant microbiomes. J Dent Res 92(12 Suppl):168S-175S. https://doi.org/10.1177/0022034513504950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank to Fundação Araucária and Associação Paranaense de Cultura (APC) (CP 10/2019)

Funding

All the costs were covered by the main author.

Author information

Authors and Affiliations

Authors

Contributions

All the authors agree with rules of the submission. Our research is an in vitro study.

Corresponding author

Correspondence to Felipe Francisco Tuon.

Ethics declarations

Conflicts of interest statement

F. F Tuon is a CNPq researcher. The other authors state that there is no conflict of interest.

Ethics approval

No need for ethics approval in our facility as the research was an in vitro study.

Consent to participate

All the authors agree and consented to participate.

Consent for publication

All the authors consent with the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Rocha, L.G.D.O., Ribeiro, V.S.T., de Andrade, A.P. et al. Evaluation of Staphylococcus aureus and Candida albicans biofilms adherence to PEEK and titanium-alloy prosthetic spine devices. Eur J Orthop Surg Traumatol 32, 981–989 (2022). https://doi.org/10.1007/s00590-021-03069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-021-03069-y

Keywords

Navigation