Skip to main content

Advertisement

Log in

How should we lengthen post-traumatic limb defects? a systematic review and comparison of motorized lengthening systems, combined internal and external fixation and external fixation alone

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Purpose

Various external fixation systems for lower extremity long bone deformities have been used to various degrees of success, while newer mechanical lengthening nail (MLN) systems offer the potential for improved patient outcomes. Proponents of MLNs argue that they reduce the number of operations, infectious complications, and improve quality of life; however, the evidence to support these claims is scant. This systematic review aims to evaluate the optimal lengthening system for treating post-traumatic long bone deformity.

Methods

The systematic review was conducted in accordance with PRISMA guidelines. PUBMED, EMBASE, CINAHL, and the Cochrane Library were searched for comparative studies of lengthening techniques among adult patients with axial deformities. Studies were screened and data extracted in duplicate. Treatment groups were pooled into external fixation (EF) alone, combined internal and external fixation (CIF), and mechanical lengthening nail (MLN). Outcomes were mean lengthening achieved, lengthening index, and reported complications.

Results

Thirteen studies with 725 patients (mean age: 29.6 years, 74% male) were included. Nearly all of the studies were either prospective or retrospective cohort studies (n = 12), with one randomized controlled trial of moderate study quality. The mean limb lengthening achieved, lengthening index, and rate of reoperation were similar among the MLN, EF, and CIF groups.

Conclusion

The purported decreased the duration of lengthening and the risk of reoperation associated with MLNs was not demonstrated in this review. Patients with post-traumatic leg length deformities remain a challenging patient population to treat, with intervention being associated with high rates of infectious complications and need for revision operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Saddawi-Konefka D, Kim HM, Chung KC (2008) A systematic review of outcomes and complications of reconstruction and amputation for type IIIB and IIIC fractures of the tibia. Plast Reconstr Surg 122(6):1796–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Giannoudis PV, Harwood PJ, Kontakis G, Allami M, Macdonald D, Kay SP et al (2009) Long-term quality of life in trauma patients following the full spectrum of tibial injury (fasciotomy, closed fracture, grade IIIB/IIIC open fracture and amputation). Inj 40(2):213–219

    Google Scholar 

  3. Mollon L, Bhattacharjee S (2017) Health related quality of life among myocardial infarction survivors in the United States: a propensity score matched analysis. Health Qual Life Outcomes 15(1):235

    Article  PubMed  PubMed Central  Google Scholar 

  4. Paley D (1990) Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res NA(250):81–104

    Google Scholar 

  5. Paley D, Maar DC (2000) Ilizarov bone transport treatment for tibial defects. J Orthop Trauma 14(2):76–85

    Article  CAS  PubMed  Google Scholar 

  6. Dias RS, Harshavardhan JKG (2018) Tibial deformity correction by Ilizarov method. Int J Res Orthop 4(2):321

    Article  Google Scholar 

  7. Parameswaran AD, Roberts CS, Seligson D, Voor M (2003) Pin tract infection with contemporary external fixation: how much of a problem? J Orthop Trauma 17(7):503–507

    Article  PubMed  Google Scholar 

  8. Antoci V, Ono CM, Antoci VJ, Raney EM (2008) Pin tract infection during limb lengthening using external fixation. Am J Orthop (Belle Mead NJ) 37(9):E150–E154

    Google Scholar 

  9. Kamegaya M, Shinohara Y, Shinada Y (1996) Limb lengthening and correction of angulation deformity: immediate correction by using a unilateral fixator. J Pediatr Orthop 16(4):477–479

    Article  CAS  PubMed  Google Scholar 

  10. Rozbruch SR, Kleinman D, Fragomen AT, Ilizarov S (2008) Limb lengthening and then insertion of an intramedullary nail: a case-matched comparison. Clin Orthop Relat Res 466(12):2923–2932

    Article  PubMed  PubMed Central  Google Scholar 

  11. Paley D, Herzenberg JE, Paremain G, Bhave A (1997) Femoral lengthening over an intramedullary nail a matched-case comparison with Ilizarov femoral lengthening. J Bone Joint Surg Am 79(10):1464–1480

    Article  CAS  PubMed  Google Scholar 

  12. Kim S-J, Mandar A, Song S-H, Song H-R (2012) Pitfalls of lengthening over an intramedullary nail in tibia: a consecutive case series. Arch Orthop Trauma Surg 132(2):185–191

    Article  PubMed  Google Scholar 

  13. Hwang N, Grimer RJ, Carter SR, Tillman RM, Abudu A, Jeys LM (2012) Early results of a non-invasive extendible prosthesis for limb-salvage surgery in children with bone tumours. J Bone Joint Surg Br 94(2):265–269

    Article  CAS  PubMed  Google Scholar 

  14. Paley D (2015) PRECICE intramedullary limb lengthening system. Expert Rev Med Devices 12(3):231–249

    Article  CAS  PubMed  Google Scholar 

  15. Thaller PH, Furmetz J, Wolf F, Eilers T, Mutschler W (2014) Limb lengthening with fully implantable magnetically actuated mechanical nails (PHENIX((R)))-preliminary results. Inj 45(Suppl 1):S60–S65

    Google Scholar 

  16. Tiefenboeck TM, Zak L, Bukaty A, Wozasek GE (2016) Pitfalls in automatic limb lengthening-first results with an intramedullary lengthening device. Orthop Traumatol Surg Res 102(7):851–855

    Article  CAS  PubMed  Google Scholar 

  17. Schiedel FM, Vogt B, Tretow HL, Schuhknecht B, Gosheger G, Horter MJ et al (2014) How precise is the PRECICE compared to the ISKD in intramedullary limb lengthening? Reliability and safety in 26 procedures. Acta Orthop 85(3):293–298

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fragomen AT, Rozbruch SR (2017) Retrograde magnetic internal lengthening nail for acute femoral deformity correction and limb lengthening. Expert Rev Med Devices 14(10):811–820

    Article  CAS  PubMed  Google Scholar 

  19. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(4):264–269

    Article  PubMed  Google Scholar 

  20. Sterne JAC, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M et al (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355:i4919

    Article  PubMed  PubMed Central  Google Scholar 

  21. Viera AJ, Garrett JM (2005) Understanding interobserver agreement: the kappa statistic. Fam med 37(5):360–363

    PubMed  Google Scholar 

  22. Bhardwaj R, Singh J, Kapila R, Boparai RS (2019) Comparision of Ilizarov ring fixator and rail fixator in infected nonunion of long bones: a retrospective followup study. Indian J Orthop 53(1):82–88

    Article  PubMed  PubMed Central  Google Scholar 

  23. Burghardt RD, Manzotti A, Bhave A, Paley D, Herzenberg JE (2016) Tibial lengthening over intramedullary nails: a matched case comparison with Ilizarov tibial lengthening. Bone Joint Res 5(1):1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dammerer D, Kirschbichler K, Donnan L, Kaufmann G, Krismer M, Biedermann R (2011) Clinical value of the Taylor spatial frame: a comparison with the Ilizarov and orthofix fixators. J Child Orthop 5(5):343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. El-Husseini TF, Ghaly NAM, Mahran MA, Al Kersh MA, Emara KM (2013) Comparison between lengthening over nail and conventional Ilizarov lengthening: a prospective randomized clinical study. Strateg Trauma Limb Reconstr 8(2):97–101

    Article  Google Scholar 

  26. Emara KM, Allam MF (2008) Ilizarov external fixation and then nailing in management of infected nonunions of the tibial shaft. J Trauma 65(3):685–691

    PubMed  Google Scholar 

  27. Fragomen AT, Kurtz AM, Barclay JR, Nguyen J, Rozbruch SR (2018) A comparison of femoral lengthening methods favors the magnetic internal lengthening nail when compared with lengthening over a nail. HSS J 14(2):166–176

    Article  PubMed  PubMed Central  Google Scholar 

  28. Horn J, Grimsrud O, Dagsgard AH, Huhnstock S, Steen H (2015) Femoral lengthening with a motorized intramedullary nail. Acta Orthop 86(2):248–256

    Article  PubMed  PubMed Central  Google Scholar 

  29. Laubscher M, Mitchell C, Timms A, Goodier D, Calder P (2016) Outcomes following femoral lengthening: an initial comparison of the precice intramedullary lengthening nail and the LRS external fixator monorail system. Bone Joint J 98B(10):1382–1388

    Article  Google Scholar 

  30. Mahboubian S, Seah M, Fragomen AT, Rozbruch SR, Seah M et al (2012) Femoral lengthening with lengthening over a nail has fewer complications than intramedullary skeletal kinetic distraction. Clin Orthop Relat Res 470(4):1221–1231

    Article  PubMed  Google Scholar 

  31. Richardson SS, Schairer WW, Fragomen AT, Rozbruch SR (2019) Cost comparison of femoral distraction osteogenesis with external lengthening over a nail versus internal magnetic lengthening nail. JAAOS-J Am Acad Orthop Surg 27(9):e430–e436

    Article  Google Scholar 

  32. Rohilla R, Wadhwani J, Devgan A, Singh R, Khanna M (2016) Prospective randomised comparison of ring versus rail fixator in infected gap nonunion of tibia treated with distraction osteogenesis. Bone Joint J 98-B(10):1399–1405

    Article  CAS  PubMed  Google Scholar 

  33. Sun X-T, Easwar TR, Stephen M, Song S-H, Kim S-J, Song H-R (2011) Comparative study of callus progression in limb lengthening with or without intramedullary nail with reference to the pixel value ratio and the Ru Li’s classification. Arch Orthop Trauma Surg 131(10):1333–1340

    Article  PubMed  Google Scholar 

  34. Hammouda AI, Jauregui JJ, Gesheff MG, Standard SC, Conway JD, Herzenberg JE (2017) Treatment of post-traumatic femoral discrepancy with PRECICE magnetic-powered intramedullary lengthening nailsm. J Orthop Trauma 31(7):369–374

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nasto LA, Coppa V, Riganti S, Ruzzini L, Manfrini M, Campanacci L et al (2020) Clinical results and complication rates of lower limb lengthening in paediatric patients using the PRECICE 2 intramedullary magnetic nail: a multicentre study. J Pediatr Orthop B 29(6):611–617

    Article  PubMed  Google Scholar 

  36. Eltorai AEM, Fuentes C (2018) Magnetic growth modulation in orthopaedic and spine surgery. J Orthop 15(1):59–66

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brinker MR, O’Connor DP (2007) Outcomes of tibial nonunion in older adults following treatment using the Ilizarov method. J Orthop Trauma 21(9):634–642

    Article  PubMed  Google Scholar 

  38. Chaudhary MM, Malhotra M, Neeli U, Vaishnani K, Banik S, Jagani N (2019) Ilizarov techniques for upper tibial nonunions: How difficult is it to achieve excellent results? J Limb Lengthening Reconstr 5(2):71

    Article  Google Scholar 

  39. Paxton EW, Kiley M-L, Love R, Barber TC, Funahashi TT, Inacio MCS (2013) Kaiser permanente implant registries benefit patient safety, quality improvement, cost effectiveness. Jt Comm J Qual Patient Saf 39(6):246-AP4

    PubMed  Google Scholar 

  40. Barlow BT, McLawhorn AS, Westrich GH (2017) The cost-effectiveness of dual mobility implants for primary total hip arthroplasty: a computer-based cost-utility model. J Bone Jt Surg 99(9):768–777

    Article  Google Scholar 

  41. Fisman DN, Reilly DT, Karchmer AW, Goldie SJ (2001) Clinical effectiveness and cost-effectiveness of 2 management strategies for infected total hip arthroplasty in the elderly. Clin Infect Dis 32(3):419–430

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research did not receive any funding and none of the participating authors report and conflicts of interests or competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Axelrod.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No ethics approval was required for this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Axelrod, D., Rubinger, L., Shah, A. et al. How should we lengthen post-traumatic limb defects? a systematic review and comparison of motorized lengthening systems, combined internal and external fixation and external fixation alone. Eur J Orthop Surg Traumatol 31, 1015–1022 (2021). https://doi.org/10.1007/s00590-020-02831-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-020-02831-y

Keywords

Navigation