Skip to main content

Advertisement

Log in

Allogeneic umbilical cord-derived mesenchymal stem cells for treating critical-sized bone defects: a translational study

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Introduction

The current ‘gold-standard’ treatment of critical-sized bone defects (CSBDs) is autografts; however, they have drawbacks including lack of massive bone source donor site morbidity, incomplete remodeling, and the risk of infection. One potential treatment for treating CSBDs is bone marrow-derived mesenchymal stem cells (BM-MSCs). Previously, there were no studies regarding the use of human umbilical cord-mesenchymal stem cells (hUC-MSCs) for treating BDs. We aim to investigate the use of allogeneic hUC-MSCs for treating CSBDs.

Method

We included subjects who were diagnosed with non-union fracture with CSBDs who agreed to undergo hUC-MSCs implantation. All patients were given allogeneic hUC-MSCs. All MSCs were obtained and cultured using the multiple-harvest explant method. Subjects were evaluated functionally using the Lower Extremity Functional Scale (LEFS) and radiologically by volume defect reduction.

Result

A total of seven (3 male, 4 female) subjects were recruited for this study. The subjects age ranged from 14 to 62 years. All seven subjects had increased LEFS during the end of the follow-up period, indicating improved functional ability. The follow-up period ranged from 12 to 36 months. One subject had wound dehiscence and infection, and two subjects developed partial union.

Conclusion

Umbilical cord mesenchymal stem cells are a potential new treatment for CSBDs. Additional studies with larger samples and control groups are required to further investigate the safety and efficacy of umbilical cord-derived mesenchymal stem cells for treating CSBDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu X, Liao X, Luo E, Chen W, Bao C, Xu HHK (2014) Mesenchymal stem cells systemically injected into femoral marrow of dogs home to mandibular defects to enhance new bone formation. Tissue Eng Part A 20(3–4):883–892

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Klontzas ME, Kenanidis EI, Heliotis M, Tsiridis E, Mantalaris A (2015) Bone and cartilage regeneration with the use of umbilical cord mesenchymal stem cells. Expert Opin Biol Ther 15(11):1541–1552

    Article  Google Scholar 

  3. Perry CR (1999) Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res 360:71–86

    Article  Google Scholar 

  4. Liu G, Zhao L, Zhang W, Cui L, Liu W, Cao Y (2008) Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate. J Mater Sci Mater Med 19(6):2367–2376

    Article  CAS  Google Scholar 

  5. Micev AJ, Kalainov DM, Soneru AP (2015) Masquelet technique for treatment of segmental bone loss in the upper extremity. J Hand Surg Am 40(3):593–598

    Article  Google Scholar 

  6. Soleymaninejadian E, Pramanik K, Samadian E (2012) Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. Am J Reprod Immunol 67(1):1–8

    Article  CAS  Google Scholar 

  7. Koch TG, Berg LC, Betts DH (2009) Current and future regenerative medicine—principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine. Can Vet J 50(2):155–165

    PubMed  PubMed Central  Google Scholar 

  8. Jones E, Yang X (2011) Mesenchymal stem cells and bone regeneration: current status. Injury 42(6):562–568

    Article  Google Scholar 

  9. Chen W, Liu J, Manuchehrabadi N, Weir MD, Zhu Z, Xu HHK (2013) Umbilical cord and bone marrow mesenchymal stem cell seeding on macroporous calcium phosphate for bone regeneration in rat cranial defects. Biomatererials 34(38):9917–9925

    Article  CAS  Google Scholar 

  10. Sponer P, Kucera T, Diaz-Garcia D, Filip S (2014) The role of mesenchymal stem cells in bone repair and regeneration. Eur J Orthop Surg Traumatol 24(3):257–262

    Article  Google Scholar 

  11. Dawson JI, Kanczler J, Tare R, Kassem M, Oreffo RC (2013) Bridging the gap: bone regeneration using skeletal stem cell-based strategies—where are we now? Stem Cells 32(1):35–44

    Article  Google Scholar 

  12. Pawitan JA, Liem IK, Budiyanti E, Fasha I, Feroniasanti L, Jamaan T et al (2014) Umbilical cord derived stem cell culture: multiple-harvest explant method. Int J PharmTech Res 6(4):1202–1208

    Google Scholar 

  13. Chadayammuri V, Hake M, Mauffrey C (2015) Innovative strategies for the management of long bone infection: a review of the Masquelet technique. Patient Saf Surg 9:32

    Article  Google Scholar 

  14. Roddy E, DeBaun MR, Daoud-Gray A, Yang YP, Gardner MJ (2018) Treatment of critical-sized bone defects: clinical and tissue engineering perspectives [Internet]. Eur J Orthop Surg Traumatol 28:351–362

    Article  Google Scholar 

  15. Hutchings G, Moncrieff L, Dompe C, Janowicz K, Sibiak R, Bryja A et al (2020) Bone regeneration, reconstruction and use of osteogenic cells; from basic knowledge, animal models to clinical trials. J Clin Med [Internet]. 9(1):139

    Article  CAS  Google Scholar 

  16. Berebichez-Fridman R, Gómez-García R, Granados-Montiel J, Berebichez-Fastlicht E, Olivos-Meza A, Granados J et al (2017) The holy grail of orthopedic surgery: mesenchymal stem cells—their current uses and potential applications. Stem Cells Int 2017:1–14

    Article  Google Scholar 

  17. Malgieri A, Kantzari E, Patrizi MP, Gambardella S (2010) Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med 3(4):248–269

    PubMed  PubMed Central  Google Scholar 

  18. Jin H, Bae Y, Kim M, Kwon S-J, Jeon H, Choi S et al (2013) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Int J Mol Sci 24(5):1294–1301

    Google Scholar 

  19. Satija NK, Singh VK, Verma YK, Gupta P, Sharma S, Afrin F et al (2009) Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. J Cell Mol Med. 13:4385–4402

    Article  CAS  Google Scholar 

  20. Dilogo IH, Primaputra MRA, Pawitan JA, Liem IK (2017) Modified masquelet technique using allogeneic umbilical cord-derived mesenchymal stem cells for infected non-union femoral shaft fracture with a 12 cm bone defect: a case report. Int J Surg Case Rep 34:11–16

    Article  Google Scholar 

  21. Linero I, Chaparro O (2014) Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS ONE 9(9):e107001

    Article  Google Scholar 

  22. Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28(3):585–596

    CAS  PubMed  Google Scholar 

  23. Chatterjea A, Meijer G, Van Blitterswijk C, De Boer J (2010) Clinical application of human mesenchymal stromal cells for bone tissue engineering. Stem Cells Int 2010:215625

    Article  Google Scholar 

  24. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E et al (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101(9):3722–3729

    Article  CAS  Google Scholar 

  25. Horie M, Choi H, Lee RH, Reger RL, Ylostalo J, Muneta T et al (2012) Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that enhances expression of type II collagen. Osteoarthr Cartil 20:1197–1207

    Article  CAS  Google Scholar 

  26. Baraniak PR, McDevitt TC (2010) Stem cell paracrine actions and tissue regeneration. Regen Med 5(1):121–143

    Article  Google Scholar 

  27. Chen Y, Shao JZ, Xiang LX, Dong XJ, Zhang GR (2008) Mesenchymal stem cells: a promising candidate in regenerative medicine. Int J Biochem Cell Biol 40(5):815–820

    Article  CAS  Google Scholar 

  28. Huang B, Cheng X, Wang H, Huang W, Wang D, Zhang K, Hu Y et al (2016) Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. J Transl Med. 14:45

    Article  Google Scholar 

  29. da Silva ML, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20(5–6):419–427

    Google Scholar 

  30. Hocking AM, Gibran NS (2010) Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res 316(14):2213–2219

    Article  CAS  Google Scholar 

  31. Ranganath SH, Levy O, Inamdar MS, Karp JM (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10(3):244–258

    Article  CAS  Google Scholar 

  32. Li Y, Yu XY, Lin SG, Li XH, Zhang S, Song YH (2007) Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochem Biophys Res Commun 356(3):780–784

    Article  CAS  Google Scholar 

  33. Kaigler D, Krebsbach PH, Polverini PJ, Mooney DJ (2003) Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells. Tissue Eng 9(1):95–103

    Article  CAS  Google Scholar 

  34. Bostrom MPG, Asnis P (1998) Transforming growth factor beta in fracture repair. Clin Orthop Relat Res 355:124–131

    Article  Google Scholar 

  35. Baba K, Yamazaki Y, Ikemoto S, Aoyagi K, Takeda A, Uchinuma E (2013) Osteogenic potential of human umbilical cord-derived mesenchymal stromal cells cultured with umbilical cord blood-derived autoserum. J Cranio-Maxillofacial Surg 41(8):775–782

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Hadisoebroto Dilogo.

Ethics declarations

Conflict of interest

Ismail Hadisoebroto Dilogo, Dina Rahmatika, Jeanne Adiwinata Pawitan, Isabella Kurnia Liem, Tri Kurniawati, and Fajar Mujadid declare that they have no conflict of interest.

Ethical approval

Ethical approval was received from the Health Research Ethics Committee of Faculty of Medicine, Universitas Indonesia—Cipto Mangunkusumo Hospital, Jakarta, Indonesia. The Reference Number was 165/H2.F1/ETIK/2014.

Registration of research studies

Clinical Trial Registry Number: NCT 0172 5698.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilogo, I.H., Rahmatika, D., Pawitan, J.A. et al. Allogeneic umbilical cord-derived mesenchymal stem cells for treating critical-sized bone defects: a translational study. Eur J Orthop Surg Traumatol 31, 265–273 (2021). https://doi.org/10.1007/s00590-020-02765-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-020-02765-5

Keywords

Navigation