Skip to main content

Advertisement

Log in

Three-column osteotomy in long constructs has lower rates of proximal junctional kyphosis and better restoration of lumbar lordosis than anterior column realignment

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Three-column osteotomies (TCOs) and minimally invasive techniques such as anterior column realignment (ACR) are powerful tools used to restore lumbar lordosis and sagittal alignment. We aimed to appraise the differences in construct and global spinal stability between TCOs and ACRs in long constructs.

Methods

We identified consecutive patients who underwent a long construct lumbar or thoracolumbar fusion between January 2016 and November 2021. “Long construct” was any construct where the uppermost instrumented vertebra (UIV) was L2 or higher and the lowermost instrumented vertebra (LIV) was in the sacrum or ileum.

Results

We identified 69 patients; 14 (20.3%) developed PJK throughout follow-up (mean 838 days). Female patients were less likely to suffer PJK (p = 0.009). TCO was more associated with open (versus minimally invasive) screw/rod placement, greater number of levels, higher UIV, greater rate of instrumentation to the ilium, and posterior (versus anterior) L5-S1 interbody placement versus the ACR cohort (p < 0.001, p < 0.001, p < 0.001, p < 0.001, p = 0.005, respectively). Patients who developed PJK were more likely to have undergone ACR (12 (32.4%) versus 2 (6.3%, p = 0.007)). The TCO cohort had better improvement of lumbar lordosis despite similar preoperative measurements (ACR: 16.8 ± 3.78°, TCO: 23.0 ± 5.02°, p = 0.046). Pelvic incidence–lumbar lordosis mismatch had greater improvement after TCO (ACR: 14.8 ± 4.02°, TCO: 21.5 ± 5.10°, p = 0.042). By multivariate analysis, ACR increased odds of PJK by 6.1-times (95% confidence interval: 1.20–31.2, p = 0.29).

Conclusion

In patients with long constructs who undergo ACR or TCO, we experienced a 20% rate of PJK. TCO decreased PJK 6.1-times compared to ACR. TCO demonstrated greater improvement of some spinopelvic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schwab F, Patel A, Ungar B, Farcy JP, Lafage V (2010) Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine (Phila Pa 1976) 35(25):2224–2231

    Article  PubMed  Google Scholar 

  2. Schwab FJ, Smith VA, Biserni M, Gamez L, Farcy JP, Pagala M (2002) Adult scoliosis: a quantitative radiographic and clinical analysis. Spine (Phila Pa 1976) 27(4):387–392

    Article  PubMed  Google Scholar 

  3. Schwab F, Farcy JP, Bridwell K et al (2006) A clinical impact classification of scoliosis in the adult. Spine (Phila Pa 1976) 31(18):2109–2114

    Article  PubMed  Google Scholar 

  4. Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F (2005) The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976) 30(18):2024–2029

    Article  PubMed  Google Scholar 

  5. Lafage V, Schwab F, Patel A, Hawkinson N, Farcy JP (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine (Phila Pa 1976) 34(17):E599-606

    Article  PubMed  Google Scholar 

  6. Kim YJ, Bridwell KH, Lenke LG, Cheh G, Baldus C (2007) Results of lumbar pedicle subtraction osteotomies for fixed sagittal imbalance: a minimum 5-year follow-up study. Spine (Phila Pa 1976) 32(20):2189–2197

    Article  PubMed  Google Scholar 

  7. O’neill KR, Lenke LG, Bridwell KH et al (2014) Clinical and radiographic outcomes after 3-column osteotomies with 5-year follow-up. Spine (Phila Pa 1976) 39(5):424–432

    Article  Google Scholar 

  8. Auerbach JD, Lenke LG, Bridwell KH et al (2012) Major complications and comparison between 3-column osteotomy techniques in 105 consecutive spinal deformity procedures. Spine (Phila Pa 1976) 37(14):1198–1210

    Article  PubMed  Google Scholar 

  9. Kim SS, Cho BC, Kim JH et al (2012) Complications of posterior vertebral resection for spinal deformity. Asian Spine J 6(4):257–265

    Article  PubMed  PubMed Central  Google Scholar 

  10. Suk SI, Kim JH, Kim WJ, Lee SM, Chung ER, Nah KH (2002) Posterior vertebral column resection for severe spinal deformities. Spine (Phila Pa 1976) 27(21):2374–2382

    Article  PubMed  Google Scholar 

  11. Mundis GM Jr, Turner JD, Kabirian N et al (2017) Anterior column realignment has similar results to pedicle subtraction osteotomy in treating adults with sagittal plane deformity. World Neurosurg 105:249–256

    Article  PubMed  Google Scholar 

  12. Turner JD, Akbarnia BA, Eastlack RK et al (2015) Radiographic outcomes of anterior column realignment for adult sagittal plane deformity: a multicenter analysis. Eur Spine J 24(Suppl 3):427–432

    Article  PubMed  Google Scholar 

  13. Leveque JC, Yanamadala V, Buchlak QD, Sethi RK (2017) Correction of severe spinopelvic mismatch: decreased blood loss with lateral hyperlordotic interbody grafts as compared with pedicle subtraction osteotomy. Neurosurg Focus 43(2):E15

    Article  PubMed  Google Scholar 

  14. Saigal R, Mundis GM Jr, Eastlack R, Uribe JS, Phillips FM, Akbarnia BA (2016) Anterior Column Realignment (ACR) in adult sagittal deformity correction: technique and review of the literature. Spine (Phila Pa 1976) 41(Suppl 8):S66-73

    PubMed  Google Scholar 

  15. Schwab FJ, Patel A, Shaffrey CI et al (2012) Sagittal realignment failures following pedicle subtraction osteotomy surgery: are we doing enough?: Clinical article. J Neurosurg Spine 16(6):539–546

    Article  PubMed  Google Scholar 

  16. Eskilsson K, Sharma D, Johansson C, Hedlund R (2017) The impact of spinopelvic morphology on the short-term outcome of pedicle subtraction osteotomy in 104 patients. J Neurosurg Spine 27(1):74–80

    Article  PubMed  Google Scholar 

  17. Buell TJ, Nguyen JH, Mazur MD et al (2018) Radiographic outcome and complications after single-level lumbar extended pedicle subtraction osteotomy for fixed sagittal malalignment: a retrospective analysis of 55 adult spinal deformity patients with a minimum 2-year follow-up. J Neurosurg Spine 30(2):242–252

    Article  PubMed  Google Scholar 

  18. Kim HJ, Yang JH, Chang DG et al (2021) Incidence and radiological risk factors of proximal junctional kyphosis in adolescent idiopathic scoliosis following pedicle screw instrumentation with rod derotation and direct vertebral rotation: a minimum 5-year follow-up study. J Clin Med 10:22

    Article  Google Scholar 

  19. Kim YJ, Bridwell KH, Lenke LG, Glattes CR, Rhim S, Cheh G (2008) Proximal junctional kyphosis in adult spinal deformity after segmental posterior spinal instrumentation and fusion: minimum five-year follow-up. Spine (Phila Pa 1976) 33(20):2179–2184

    Article  PubMed  Google Scholar 

  20. Smith JS, Klineberg E, Lafage V et al (2016) Prospective multicenter assessment of perioperative and minimum 2-year postoperative complication rates associated with adult spinal deformity surgery. J Neurosurg Spine 25(1):1–14

    Article  PubMed  Google Scholar 

  21. Cerpa M, Sardar Z, Lenke L (2020) Revision surgery in proximal junctional kyphosis. Eur Spine J 29(Suppl 1):78–85

    Article  PubMed  Google Scholar 

  22. Lau D, Clark AJ, Scheer JK et al (2014) Proximal junctional kyphosis and failure after spinal deformity surgery: a systematic review of the literature as a background to classification development. Spine (Phila Pa 1976) 39(25):2093–2102

    Article  PubMed  Google Scholar 

  23. Maruo K, Ha Y, Inoue S et al (2013) Predictive factors for proximal junctional kyphosis in long fusions to the sacrum in adult spinal deformity. Spine (Phila Pa 1976) 38(23):E1469-1476

    Article  PubMed  Google Scholar 

  24. Yagi M, King AB, Boachie-Adjei O (2012) Incidence, risk factors, and natural course of proximal junctional kyphosis: surgical outcomes review of adult idiopathic scoliosis. Minimum 5 years of follow-up. Spine (Phila Pa 1976) 37(17):1479–1489

    Article  PubMed  Google Scholar 

  25. Park SJ, Lee CS, Chung SS, Lee JY, Kang SS, Park SH (2017) Different Risk Factors of Proximal Junctional Kyphosis and Proximal Junctional Failure Following Long Instrumented Fusion to the Sacrum for Adult Spinal Deformity: Survivorship Analysis of 160 Patients. Neurosurgery 80(2):279–286

    Article  PubMed  Google Scholar 

  26. Scheer JK, Osorio JA, Smith JS et al (2016) Development of validated computer-based preoperative predictive model for Proximal Junction Failure (PJF) or clinically significant PJK with 86% accuracy based on 510 ASD patients with 2-year follow-up. Spine (Phila Pa 1976) 41(22):E1328-e1335

    Article  PubMed  Google Scholar 

  27. Kim HJ, Bridwell KH, Lenke LG et al (2013) Proximal junctional kyphosis results in inferior SRS pain subscores in adult deformity patients. Spine (Phila Pa 1976) 38(11):896–901

    Article  PubMed  Google Scholar 

  28. Lazaro B, Sardi JP, Smith JS et al (2023) Proximal junctional failure in primary thoracolumbar fusion/fixation to the sacrum/pelvis for adult symptomatic lumbar scoliosis: long-term follow-up of a prospective multicenter cohort of 160 patients. J Neurosurg Spine 38(3):319–330

    Article  PubMed  Google Scholar 

  29. Cho JH, Lau D, Ashayeri K, Deviren V, Ames CP (2023) Association between the bone density of posterior fusion mass and mechanical complications after thoracolumbar three-column osteotomy for adult spinal deformity. Spine (Phila Pa 1976) 48(10):672–682

    Article  PubMed  Google Scholar 

  30. Kim YJ, Lenke LG, Bridwell KH et al (2007) Proximal junctional kyphosis in adolescent idiopathic scoliosis after 3 different types of posterior segmental spinal instrumentation and fusions: incidence and risk factor analysis of 410 cases. Spine (Phila Pa 1976) 32(24):2731–2738

    Article  PubMed  Google Scholar 

  31. Gandhi SV, Januszewski J, Bach K et al (2019) Development of proximal junctional kyphosis after minimally invasive lateral anterior column realignment for adult spinal deformity. Neurosurgery 84(2):442–450

    Article  PubMed  Google Scholar 

  32. Schwab F, Blondel B, Chay E et al (2014) The comprehensive anatomical spinal osteotomy classification. Neurosurgery 74(1):112–120 (discussion 120)

    Article  PubMed  Google Scholar 

  33. Glattes RC, Bridwell Kh Fau, Lenke LG, Lenke Lg Fau, Kim YJ, Kim Yj Fau, Rinella A, Rinella A Fau, Edwards C, 2nd, Edwards C, 2nd. Proximal junctional kyphosis in adult spinal deformity following long instrumented posterior spinal fusion: incidence, outcomes, and risk factor analysis (1528–1159 (Electronic))

  34. Yagi M, Rahm M, Gaines R et al (2014) Characterization and surgical outcomes of proximal junctional failure in surgically treated patients with adult spinal deformity. Spine (Phila Pa 1976) 39(10):E607-614

    Article  PubMed  Google Scholar 

  35. Kim HJ, Boachie-Adjei O, Shaffrey CI et al (2014) Upper thoracic versus lower thoracic upper instrumented vertebrae endpoints have similar outcomes and complications in adult scoliosis. Spine (Phila Pa 1976) 39(13):E795-799

    Article  PubMed  Google Scholar 

  36. Gill JB, Levin A, Burd T, Longley M (2008) Corrective osteotomies in spine surgery. J Bone Joint Surg Am 90(11):2509–2520

    Article  PubMed  Google Scholar 

  37. Smith JS, Sansur CA, Donaldson WF 3rd et al (2011) Short-term morbidity and mortality associated with correction of thoracolumbar fixed sagittal plane deformity: a report from the Scoliosis Research Society Morbidity and Mortality Committee. Spine (Phila Pa 1976) 36(12):958–964

    Article  PubMed  Google Scholar 

  38. Dorward IG, Lenke LG (2010) Osteotomies in the posterior-only treatment of complex adult spinal deformity: a comparative review. Neurosurg Focus 28(3):E4

    Article  PubMed  Google Scholar 

  39. Hyun SJ, Rhim SC (2010) Clinical outcomes and complications after pedicle subtraction osteotomy for fixed sagittal imbalance patients : a long-term follow-up data. J Korean Neurosurg Soc 47(2):95–101

    Article  PubMed  PubMed Central  Google Scholar 

  40. Smith JS, Shaffrey CI, Klineberg E et al (2017) Complication rates associated with 3-column osteotomy in 82 adult spinal deformity patients: retrospective review of a prospectively collected multicenter consecutive series with 2-year follow-up. J Neurosurg Spine 27(4):444–457

    Article  PubMed  Google Scholar 

  41. Rhee JM, Bridwell KH, Won DS, Lenke LG, Chotigavanichaya C, Hanson DS (2002) Sagittal plane analysis of adolescent idiopathic scoliosis: the effect of anterior versus posterior instrumentation. Spine (Phila Pa 1976) 27(21):2350–2356

    Article  PubMed  Google Scholar 

  42. Lowe TG, Kasten MD (1994) An analysis of sagittal curves and balance after Cotrel-Dubousset instrumentation for kyphosis secondary to Scheuermann’s disease. A review of 32 patients. Spine (Phila Pa 1976) 19(15):1680–1685

    Article  CAS  PubMed  Google Scholar 

  43. Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976) 8(8):817–831

    Article  CAS  PubMed  Google Scholar 

  44. Flores-Milan G, Cuello CC, Pressman E et al (2023) Risk factors for adjacent segment disease in short segment lumbar interbody fusion-a case series. Oper Neurosurg (Hagerstown) 25(2):136–141

    Article  PubMed  Google Scholar 

  45. Ha Y, Maruo K, Racine L et al (2013) Proximal junctional kyphosis and clinical outcomes in adult spinal deformity surgery with fusion from the thoracic spine to the sacrum: a comparison of proximal and distal upper instrumented vertebrae. J Neurosurg Spine 19(3):360–369

    Article  PubMed  Google Scholar 

  46. Fujimori T, Inoue S, Le H et al (2014) Long fusion from sacrum to thoracic spine for adult spinal deformity with sagittal imbalance: upper versus lower thoracic spine as site of upper instrumented vertebra. Neurosurg Focus 36(5):E9

    Article  PubMed  Google Scholar 

  47. Passias PG, Bortz C, Pierce KE et al (2022) Comparing and contrasting the clinical utility of sagittal spine alignment classification frameworks: Roussouly versus SRS-Schwab. Spine (Phila Pa 1976) 47(6):455–462

    Article  PubMed  Google Scholar 

  48. Li J, Zhang Y, Zhang Y et al (2023) Clinical application of the Roussouly classification in the sagittal balance reconstruction of 101 adolescent idiopathic scoliosis patients. Orthop Surg 15(1):141–151

    Article  PubMed  Google Scholar 

  49. Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976) 30(3):346–353

    Article  PubMed  Google Scholar 

  50. Kim YH, Ha KY, Chang DG et al (2020) Relationship between iliac screw loosening and proximal junctional kyphosis after long thoracolumbar instrumented fusion for adult spinal deformity. Eur Spine J 29(6):1371–1378

    Article  PubMed  Google Scholar 

  51. Decker S, Lafage R, Krettek C et al (2020) Is Sacral Extension a Risk Factor for Early Proximal Junctional Kyphosis in Adult Spinal Deformity Surgery? Asian Spine J 14(2):212–219

    Article  PubMed  Google Scholar 

  52. Kebaish KM, Martin CT, O’Brien JR, LaMotta IE, Voros GD, Belkoff SM (2013) Use of vertebroplasty to prevent proximal junctional fractures in adult deformity surgery: a biomechanical cadaveric study. Spine J 13(12):1897–1903

    Article  PubMed  Google Scholar 

  53. Raman T, Miller E, Martin CT, Kebaish KM (2017) The effect of prophylactic vertebroplasty on the incidence of proximal junctional kyphosis and proximal junctional failure following posterior spinal fusion in adult spinal deformity: a 5-year follow-up study. Spine J 17(10):1489–1498

    Article  PubMed  Google Scholar 

  54. Higgins KB, Harten RD, Langrana NA, Reiter MF. Biomechanical effects of unipedicular vertebroplasty on intact vertebrae. Spine (Phila Pa 1976). 2003;28(14):1540-1547; discussion 1548.

  55. Sun K, Liebschner MA. Biomechanics of prophylactic vertebral reinforcement. Spine (Phila Pa 1976). 2004;29(13):1428–1435; discusssion 1435.

  56. Hart RA, Prendergast MA, Roberts WG, Nesbit GM, Barnwell SL (2008) Proximal junctional acute collapse cranial to multi-level lumbar fusion: a cost analysis of prophylactic vertebral augmentation. Spine J 8(6):875–881

    Article  PubMed  Google Scholar 

  57. Martin CT, Skolasky RL, Mohamed AS, Kebaish KM (2013) Preliminary results of the effect of prophylactic vertebroplasty on the incidence of proximal junctional complications after posterior spinal fusion to the low thoracic spine. Spine Deform 1(2):132–138

    Article  PubMed  Google Scholar 

  58. Theologis AA, Burch S (2015) Prevention of acute proximal junctional fractures after long thoracolumbar posterior fusions for adult spinal deformity using 2-level cement augmentation at the upper instrumented vertebra and the vertebra 1 level proximal to the upper instrumented vertebra. Spine (Phila Pa 1976) 40(19):1516–1526

    Article  PubMed  Google Scholar 

  59. Ghobrial GM, Eichberg DG, Kolcun JPG et al (2017) Prophylactic vertebral cement augmentation at the uppermost instrumented vertebra and rostral adjacent vertebra for the prevention of proximal junctional kyphosis and failure following long-segment fusion for adult spinal deformity. Spine J 17(10):1499–1505

    Article  PubMed  Google Scholar 

  60. Rahmani R, Sanda M, Sheffels E et al (2022) The efficacy of prophylactic vertebroplasty for preventing proximal junctional complications after spinal fusion: a systematic review. Spine J 22(12):2050–2058

    Article  PubMed  Google Scholar 

  61. Gassie K, Pressman E, Vicente AC et al (2023) Percutaneous vertebroplasty and upper instrumented vertebra cement augmentation reducing early proximal junctional kyphosis and failure rate in adult spinal deformity: case series and literature review. Oper Neurosurg (Hagerstown) 25(3):209–215

    Article  PubMed  Google Scholar 

  62. Oakland RJ, Furtado NR, Wilcox RK, Timothy J, Hall RM (2009) Preliminary biomechanical evaluation of prophylactic vertebral reinforcement adjacent to vertebroplasty under cyclic loading. Spine J 9(2):174–181

    Article  PubMed  Google Scholar 

  63. Furtado N, Oakland RJ, Wilcox RK, Hall RM (2007) A biomechanical investigation of vertebroplasty in osteoporotic compression fractures and in prophylactic vertebral reinforcement. Spine (Phila Pa 1976) 32(17):E480-487

    Article  PubMed  Google Scholar 

  64. Kim YJ, Bridwell KH, Lenke LG, Kim J, Cho SK (2005) Proximal junctional kyphosis in adolescent idiopathic scoliosis following segmental posterior spinal instrumentation and fusion: minimum 5-year follow-up. Spine (Phila Pa 1976) 30(18):2045–2050

    Article  PubMed  Google Scholar 

  65. Laouissat F, Sebaaly A, Gehrchen M, Roussouly P (2018) Classification of normal sagittal spine alignment: refounding the Roussouly classification. Eur Spine J 27(8):2002–2011

    Article  PubMed  Google Scholar 

  66. Pesenti S, Lafage R, Stein D et al (2018) The amount of proximal lumbar lordosis is related to pelvic incidence. Clin Orthop Relat Res 476(8):1603–1611

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hills J, Lenke LG, Sardar ZM et al (2022) The T4-L1-hip axis: defining a normal sagittal spinal alignment. Spine (Phila Pa 1976) 47(19):1399–1406

    Article  PubMed  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puya Alikhani.

Ethics declarations

Conflict of interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pressman, E., Monsour, M., Liaw, D. et al. Three-column osteotomy in long constructs has lower rates of proximal junctional kyphosis and better restoration of lumbar lordosis than anterior column realignment. Eur Spine J 33, 590–598 (2024). https://doi.org/10.1007/s00586-023-08115-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-08115-3

Keywords

Navigation