Skip to main content

Advertisement

Log in

The role of intraoperative extensor digitorum brevis muscle MEPs in spinal surgery

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Intraoperative muscle motor evoked potentials (m-MEPs) are widely used in spinal surgery with the aim of identifying a damage to spinal cord at a reversible stage. Generally, lower limb m-MEPs are recorded from abductor hallucis [AH] and the tibialis anterior [TA]. The purpose of this work is to study an unselected population by recording the m-MEPs from TA, AH and extensor digitorum brevis (EDB), with the aim of identifying the most adjustable and stable muscles responses intraoperatively.

Methods

Transcranially electrically induced m-MEPs were intraoperative recorded in a total of 107 surgical procedures. m-MEPs were recorded by a needle electrode placed in the muscle from TA, AH and EDB muscles in the lower extremities.

Results

Overall monitorability (i.e., at least 1 Lower Limb m-MEP recordable) was 100/107 (93.5%). In the remaining 100 surgeries in 3 cases, the only muscle that could be recorded at baseline was one AH, and in other 2 the EDB. Persistence (i.e., the recordability of m-MEP from baseline to the end of surgery) was 88.7% for TA, 89.8% for AH and 93.8% for EDB.

Conclusion

In our series, EDB m-MEPs have demonstrated a recordability superior to TA and a stability similar to AH. The explanations may be different and range from changes in the excitability of the cortical motor neuron to the different sensitivity to ischemia of the spinal motor neuron. EDB can be used alternatively or can be added to TA and AH as a target muscle of the lower limb in spinal surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jones SJ, Harrison R, Koh KF, Mendoza N, Crockard HA (1996) Motor evoked potential monitoring during spinal surgery: responses of distal limb muscles to transcranial cortical stimulation with pulse trains. Electroencephalogr Clin Neurophysiol 100(5):375–383 (PMID: 8893655)

    Article  CAS  PubMed  Google Scholar 

  2. Boyd SG, Rothwell JC, Cowan JM, Webb PJ, Morley T, Asselman P, Marsden CD (1986) A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities. J Neurol Neurosurg Psychiatry 49(3):251–257. https://doi.org/10.1136/jnnp.49.3.251. (PMID: 3958738; PMCID: PMC1028723)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burke D, Hicks R, Stephen J, Woodforth I, Crawford M (1992) Assessment of corticospinal and somatosensory conduction simultaneously during scoliosis surgery. Electroencephalogr Clin Neurophysiol 85(6):388–396. https://doi.org/10.1016/0168-5597[92]90052-d. (PMID: 1282457)

    Article  CAS  PubMed  Google Scholar 

  4. Deletis V, Sala F (2008) Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol 119(2):248–264. https://doi.org/10.1016/j.clinph.2007.09.135. (Epub 2007 Nov 28 PMID: 18053764)

    Article  PubMed  Google Scholar 

  5. MacDonald DB, Dong C, Quatrale R, Sala F, Skinner S, Soto F, Szelényi A (2019) Recommendations of the international society of intraoperative neurophysiology for intraoperative somatosensory evoked potentials. Clin Neurophysiol 130(1):161–179. https://doi.org/10.1016/j.clinph.2018.10.008. (Epub 2018 Nov 14 PMID: 30470625)

    Article  CAS  PubMed  Google Scholar 

  6. Lesser RP, Raudzens P, Lüders H, Nuwer MR, Goldie WD, Morris HH 3rd, Dinner DS, Klem G, Hahn JF, Shetter AG et al (1986) Postoperative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials. Ann Neurol 19(1):22–25. https://doi.org/10.1002/ana.410190105. (PMID: 3947036)

    Article  CAS  PubMed  Google Scholar 

  7. Deletis V, Sala F (2004) Intraoperative neurophysiological monitoring during spine surgery: an update. Curr Opin Orthop 2004(15):154–158

    Article  Google Scholar 

  8. Ben-David B, Haller G, Taylor P (1987) Anterior spinal fusion complicated by paraplegia. a case report of a false-negative somatosensory-evoked potential. Spine 12:536–539

    Article  CAS  PubMed  Google Scholar 

  9. Ecker ML, Dormans JP, Schwartz DM, Drummond DS, Bulman WA (1996) Efficacy of spinal cord monitoring in scoliosis surgery in patients with cerebral palsy. J Spinal Disord 9:159–164

    Article  CAS  PubMed  Google Scholar 

  10. Ginsburg HH, Shetter AG, Raudzens PA (1985) Postoperative paraplegia with preserved intraoperative somatosensory evoked potentials. Case Report J Neurosurg 1985(63):296–300

    Google Scholar 

  11. Zornow MH, Grafe MR, Tybor C, Swenson MR (1990) Preservation of evoked potentials in a case of anterior spinal artery syndrome. Electroencephalogr Clin Neurophysiol 77:137–139

    Article  CAS  PubMed  Google Scholar 

  12. Hyun SJ, Rhim SC (2009) Combined motor and somatosensory evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in 17 consecutive procedures. Br J Neurosurg 23(4):393–400. https://doi.org/10.1080/02688690902964744. (PMID: 19637010)

    Article  PubMed  Google Scholar 

  13. Weinzierl MR, Reinacher P, Gilsbach JM, Rohde V (2007) Combined motor and somatosensory evoked potentials for intraoperative monitoring: intra- and postoperative data in a series of 69 operations. Neurosurg Rev 30(2):109–116. https://doi.org/10.1007/s10143-006-0061-5. (Epub 2007 Jan 13. PMID: 17221265)

    Article  CAS  PubMed  Google Scholar 

  14. Funaba M, Kanchiku T, Yoshida G, Imagama S, Kawabata S, Fujiwara Y, Ando M, Yamada K, Taniguchi S, Iwasaki H, Tadokoro N, Takahashi M, Wada K, Yamamoto N, Shigematsu H, Kobayashi K, Yasuda A, Ushirozako H, Ando K, Hashimoto J, Morito S, Takatani T, Tani T, Matsuyama Y (2021) Efficacy of intraoperative neuromonitoring using transcranial motor-evoked potentials for degenerative cervical myelopathy: a prospective multicenter study by the monitoring committee of the Japanese society for spine surgery and related research. Spine. https://doi.org/10.1097/BRS.0000000000004156. (Epub ahead of print. PMID: 34224513)

    Article  PubMed  Google Scholar 

  15. Wang S, Ren Z, Liu J, Zhang J, Tian Y (2020) The prediction of intraoperative cervical cord function changes by different motor evoked potentials phenotypes in cervical myelopathy patients. BMC Neurol 20(1):221. https://doi.org/10.1186/s12883-020-01799-w. (PMID: 32473653; PMCID: PMC7261380)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, Bricolo A (2006) Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery 58(6):1129–1143. https://doi.org/10.1227/01.NEU.0000215948.97195.58. (PMID: 16723892)

    Article  PubMed  Google Scholar 

  17. Hilibrand AS, Schwartz DM, Sethuraman V, Vaccaro AR, Albert TJ (2004) Comparison of transcranial electric motor and somatosensory evoked potential monitoring during cervical spine surgery. J Bone Joint Surg Am 86(6):1248–1253. https://doi.org/10.2106/00004623-200406000-00018. (PMID: 15173299)

    Article  PubMed  Google Scholar 

  18. Schwartz DM, Auerbach JD, Dormans JP, Flynn J, Drummond DS, Bowe JA, Laufer S, Shah SA, Bowen JR, Pizzutillo PD, Jones KJ, Drummond DS (2007) Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg Am 89(11):2440–2449. https://doi.org/10.2106/JBJS.F.01476. (PMID: 17974887)

    Article  PubMed  Google Scholar 

  19. Costa P, Peretta P, Faccani G (2012) Relevance of intraoperative D wave in spine and spinal cord surgeries. Eur Spine J 22(4):840–848. https://doi.org/10.1007/s00586-012-2576-5. (Epub 2012 Nov 17. PMID: 23161419; PMCID: PMC3631052)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rho YJ, Rhim SC, Kang JK (2016) Is intraoperative neurophysiological monitoring valuable predicting postoperative neurological recovery? Spinal Cord 54(12):1121–1126. https://doi.org/10.1038/sc.2016.65. (Epub 2016 May 10 PMID: 27163449)

    Article  CAS  PubMed  Google Scholar 

  21. Pencovich N, Korn A, Constantini S (2013) Intraoperative neurophysiologic monitoring during syringomyelia surgery: lessons from a series of 13 patients. Acta Neurochir [Wien] 155(5):785–791. https://doi.org/10.1007/s00701-013-1648-6. (Epub 2013 Mar 9. PMID: 23474772)

    Article  PubMed  Google Scholar 

  22. Korn A, Halevi D, Lidar Z, Biron T, Ekstein P, Constantini S (2015) Intraoperative neurophysiological monitoring during resection of intradural extramedullary spinal cord tumors: experience with 100 cases. Acta Neurochir [Wien] 157(5):819–830. https://doi.org/10.1007/s00701-014-2307-2. (Epub 2014 Dec 18 PMID: 25514869)

    Article  CAS  PubMed  Google Scholar 

  23. Ghadirpour R, Nasi D, Iaccarino C, Romano A, Motti L, Sabadini R, Valzania F, Servadei F (2018) Intraoperative neurophysiological monitoring for intradural extramedullary spinal tumors: predictive value and relevance of D-wave amplitude on surgical outcome during a 10-year experience. J Neurosurg Spine 30(2):259–267. https://doi.org/10.3171/2018.7.SPINE18278. (PMID: 3049713)

    Article  PubMed  Google Scholar 

  24. Kothbauer KF, Deletis V, Epstein FJ (1998) Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus 4(5):e1. https://doi.org/10.3171/foc.1998.4.5.4. (PMID: 17154450)

    Article  CAS  PubMed  Google Scholar 

  25. Hattori K, Yoshitani K, Kato S, Kawaguchi M, Kawamata M, Kakinohana M, Yamada Y, Yamakage M, Nishiwaki K, Izumi S, Yoshikawa Y, Mori Y, Hasegawa K, Onishi Y (2019) Association between motor-evoked potentials and spinal cord damage diagnosed with magnetic resonance imaging after thoracoabdominal and descending aortic aneurysm repair. J Cardiothorac Vasc Anesth 33(7):1835–1842. https://doi.org/10.1053/j.jvca.2018.12.004. (Epub 2018 Dec 5 PMID: 30638920)

    Article  PubMed  Google Scholar 

  26. Liu LY, Callahan B, Peterss S, Dumfarth J, Tranquilli M, Ziganshin BA, Elefteriades JA (2016) Neuromonitoring using motor and somatosensory evoked potentials in aortic surgery: neuromonitoring in aortic surgery. J Card Surg 31(6):383–389. https://doi.org/10.1111/jocs.12739. (PMID: 27193893)

    Article  CAS  PubMed  Google Scholar 

  27. Dong CC, MacDonald DB, Janusz MT (2002) Intraoperative spinal cord monitoring during descending thoracic and thoracoabdominal aneurysm surgery. Ann Thorac Surg 74(5):S1873-6-S1892-8. https://doi.org/10.1016/s0003-4975[02]04137-1. (PMID: 12440684)

    Article  PubMed  Google Scholar 

  28. Keyhani K, Miller CC 3rd, Estrera AL, Wegryn T, Sheinbaum R, Safi HJ (2009) Analysis of motor and somatosensory evoked potentials during thoracic and thoracoabdominal aortic aneurysm repair. J Vasc Surg 49(1):36–41. https://doi.org/10.1016/j.jvs.2008.08.005. (Epub 2008 Oct 1 PMID: 18829232)

    Article  PubMed  Google Scholar 

  29. de Haan P, Kalkman CJ, de Mol BA, Ubags LH, Veldman DJ, Jacobs MJ (1997) Efficacy of transcranial motor-evoked myogenic potentials to detect spinal cord ischemia during operations for thoracoabdominal aneurysms. J Thorac Cardiovasc Surg 113(1):87–100. https://doi.org/10.1016/S0022-5223[97]70403-3. (PMID: 9011706)

    Article  PubMed  Google Scholar 

  30. Meylaerts SA, Jacobs MJ, van Iterson V, De Haan P, Kalkman CJ (1999) Comparison of transcranial motor evoked potentials and somatosensory evoked potentials during thoraco-abdominal aortic aneurysm repair. Ann Surg 230(6):742–749. https://doi.org/10.1097/00000658-199912000-00002. (PMID: 10615928; PMCID: PMC1420937)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jacobs MJ, Mess W, Mochtar B, Nijenhuis RJ, Statius van Eps RG, Schurink GW (2006) The value of motor evoked potentials in reducing paraplegia during thoracoabdominal aneurysm repair. J Vasc Surg 43(2):239–246. https://doi.org/10.1016/j.jvs.2005.09.042. (PMID: 16476594)

    Article  PubMed  Google Scholar 

  32. MacDonald DB, Janusz M (2002) An approach to intraoperative neurophysiologic monitoring of thoracoabdominal aneurysm surgery. J Clin Neurophysiol 19(1):43–54. https://doi.org/10.1097/00004691-200201000-00006. (PMID: 11896352)

    Article  PubMed  Google Scholar 

  33. Rizkallah M, El Abiad R, Badr E, Ghanem I (2019) Positional disappearance of motor evoked potentials is much more likely to occur in non-idiopathic scoliosis. J Child Orthop 13(2):206–212. https://doi.org/10.1302/1863-2548.13.180102. (PMID: 30996746; PMCID: PMC6442502)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miller SM, Donegan SW, Voigt N, Eltorai AEM, Nguyen J, Machan JT, Daniels AH, Shetty T (2019) Transcranial motor-evoked potentials for prediction of postoperative neurologic and motor deficit following surgery for thoracolumbar scoliosis. Orthop Rev [Pavia] 11(1):7757. https://doi.org/10.4081/or.2019.7757. (PMID: 30996839; PMCID: PMC6452093)

    Article  PubMed Central  Google Scholar 

  35. Shi B, Qiu J, Xu L, Li Y, Jiang D, Xia S, Liu Z, Sun X, Shi B, Zhu Z, Qiu Y (2020) Somatosensory and motor evoked potentials during correction surgery of scoliosis in neurologically asymptomatic chiari malformation-associated scoliosis: a comparison with idiopathic scoliosis. Clin Neurol Neurosurg 191:105689. https://doi.org/10.1016/j.clineuro.2020.105689. (Epub 2020 Jan 20. PMID: 32006930)

    Article  PubMed  Google Scholar 

  36. Lo YL, Tan YE, Raman S, Teo A, Dan YF, Guo CM (2018) Systematic re-evaluation of intraoperative motor-evoked potential suppression in scoliosis surgery. Scoliosis Spinal Disord 2(13):12. https://doi.org/10.1186/s13013-018-0161-3. (PMID: 29988605; PMCID: PMC6027569)

    Article  Google Scholar 

  37. Pelosi L, Lamb J, Grevitt M, Mehdian SM, Webb JK, Blumhardt LD (2002) Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin Neurophysiol 113(7):1082–1091. https://doi.org/10.1016/s1388-2457[02]00027-5. (PMID: 12088704)

    Article  PubMed  Google Scholar 

  38. Pastorelli F, Di Silvestre M, Plasmati R, Michelucci R, Greggi T, Morigi A, Bacchin MR, Bonarelli S, Cioni A, Vommaro F, Fini N, Lolli F, Parisini P (2011) The prevention of neural complications in the surgical treatment of scoliosis: the role of the neurophysiological intraoperative monitoring. Eur Spine J Suppl 1(Suppl 1):S105–S114. https://doi.org/10.1007/s00586-011-1756-z. (Epub 2011 Mar 18. PMID: 21416379; PMCID: PMC3087032)

    Article  Google Scholar 

  39. MacDonald DB, Al Zayed Z, Khoudeir I, Stigsby B (2003) Monitoring scoliosis surgery with combined multiple pulse transcranial electric motor and cortical somatosensory-evoked potentials from the lower and upper extremities. Spine 28(2):194–203. https://doi.org/10.1097/00007632-200301150-00018. (PMID: 12544939)

    Article  PubMed  Google Scholar 

  40. Feng B, Qiu G, Shen J, Zhang J, Tian Y, Li S, Zhao H, Zhao Y (2012) Impact of multimodal intraoperative monitoring during surgery for spine deformity and potential risk factors for neurological monitoring changes. J Spinal Disord Tech 25(4):E108–E114. https://doi.org/10.1097/BSD.0b013e31824d2a2f. (PMID: 22367467)

    Article  PubMed  Google Scholar 

  41. Macdonald DB (2006) Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput 20(5):347–377. https://doi.org/10.1007/s10877-006-9033-0. (Epub 2006 Jul 11 PMID: 16832580)

    Article  PubMed  Google Scholar 

  42. Szelényi A, Kothbauer KF, Deletis V (2007) Transcranial electric stimulation for intraoperative motor evoked potential monitoring: Stimulation parameters and electrode montages. Clin Neurophysiol 118(7):1586–1595. https://doi.org/10.1016/j.clinph.2007.04.008. (Epub 2007 May 15 PMID: 17507288)

    Article  PubMed  Google Scholar 

  43. Deletis V (2002) Intraoperative neurophysiology and methodologies used to monitor the functional integrity of the motor system. In: Deletis V, Shils JL (eds) Neurophysiology in neurosurgery. Academic Press, California, pp 25–51

    Chapter  Google Scholar 

  44. Journee HL, Polak HE, de Kleuver M (2004) Influence of electrode impedance on threshold voltage for transcranial electrical stimulation in motor evoked potential monitoring. Med Biol Eng Comput 42(4):557–561

    Article  CAS  PubMed  Google Scholar 

  45. Watanabe K, Watanabe T, Takahashi A, Saito N, Hirato M, Sasaki T (2004) Transcranial electrical stimulation through screw electrodes for intraoperative monitoring of motor evoked potentials. Technical note. J Neurosurg 100(1):155–160

    Article  PubMed  Google Scholar 

  46. Szele ́nyiDeletis AV (2004) Motor evoked potentials. J Neurosurg 101(3):563–564

    Google Scholar 

  47. MacDonald DB (2002) Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol 19(5):416–429

    Article  PubMed  Google Scholar 

  48. Hausmann ON, Minb K, Boosb N, Ruetschc YA, Ernia T, Curta A (2002) Transcranial electrical stimulation: significance of fast versus slow charge delivery for intra-operative monitoring. Clin Neurophysiol 113:1532–1535

    Article  PubMed  Google Scholar 

  49. Deletis V, Isgum V, Amassian VE (2001) Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 1. Recovery time of corticospinal tract direct waves elicited by pairs of transcranial electrical stimuli. Clin Neurophysiol 112(3):438–444

    Article  CAS  PubMed  Google Scholar 

  50. Deletis V, Rodi Z, Amassian VE (2001) Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Clin Neurophysiol 112(3):445–452. https://doi.org/10.1016/S1388-2457(00)00557-5. (PMID: 11222965)

    Article  CAS  PubMed  Google Scholar 

  51. Novak K, de Camargo AB, Neuwirth M, Kothbauer K, Amassian VE, Deletis V (2004) The refractory period of fast conducting corticospinal tract axons in man and its implications for intra-operative monitoring of motor evoked potentials. Clin Neurophysiol 115(8):1931–1941

    Article  PubMed  Google Scholar 

  52. Bartley K, Woodforth IJ, Stephen JPH, Burke D (2002) Corticospinal volleys and compound muscle action potentials produced by repetitive transcranial stimulation during spinal surgery. Clin Neurophysiol 113(1):78–90. https://doi.org/10.1016/S1388-2457(01)00711-8

    Article  PubMed  Google Scholar 

  53. MacDonald DB, Stigsby B (2003) Use of D waves in intraoperative monitoring. In: Proceedings of the symposium on intraoperative neurophysiology [Ljubjana Institute of Clinical Neurophysiology web site]. Oct 17, 2003; 18–28. Available at: www.kclj.si/ikn/Dejavnosti/FAGA/2003/INVI2003.HTM Accessed Nov 12, 2003

  54. Scheufler KM, Reinacher PC, Blumrich W, Zentner J, Priebe HJ (2005) The modifying effects of stimulation pattern and propofol plasma concentration on motor-evoked potentials. Anesth Analg 100:440–447

    Article  CAS  PubMed  Google Scholar 

  55. Dong CCJ, MacDonald DB, Akagami R, Westerberg B, AlKhani A, Kanaan I, Hassounah M (2005) Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clin Neurophysiol 116(3):588–596. https://doi.org/10.1016/j.clinph.2004.09.013

    Article  PubMed  Google Scholar 

  56. Quinones-Hinojosa A, Lyon R, Zada G, Lamborn KR, Gupta N, Parsa AT, McDermott MW, Weinstein PR (2005) Changes in transcranial motor evoked potentials during intramedullary spinal cord tumor resection correlate with postoperative motor function. Neurosurgery 56(5):982–993

    PubMed  Google Scholar 

  57. Calancie B, Harris W, Broton JG, Alexeeva N, Green BA (1998) “Threshold-level” multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring. J Neurosurg 88(3):457–470

    Article  CAS  PubMed  Google Scholar 

  58. Calancie B, Harris W, Brindle GF, Green BA, Landy HJ (2001) Threshold-level repetitive transcranial electrical stimulation for intraoperative monitoring of central motor conduction. J Neurosurg 95:161–168

    CAS  PubMed  Google Scholar 

  59. Langeloo DD, Lelivelt A, Journee HL, Slappendel R, de Kleuver M (2003) Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: a study of 145 patients. Spine 28(10):1043–1050

    Article  PubMed  Google Scholar 

  60. Parikh P, Cheongsiatmoy J, Shilian P, Gonzalez AA (2018) Differences in the transcranial motor evoked potentials between proximal and distal lower extremity muscles. J Clin Neurophysiol 35(2):155–158. https://doi.org/10.1097/WNP.0000000000000454. (PMID: 29499019)

    Article  PubMed  Google Scholar 

  61. Michaeli A, Appel S, Korn A, Danto J, Ashkenazi E (2020) Intraoperative monitoring of corticospinal tracts in anterior cervical decompression and fusion surgery: excitability differentials of lower extremity muscles. Clin Neurophysiol Pract 10(5):59–63. https://doi.org/10.1016/j.cnp.2020.02.002. (PMID: 32258833; PMCID: PMC7110302)

    Article  Google Scholar 

  62. McCormick PC, Torres R, Post KD, Stein BM (1990) Intramedullary ependymoma of the spinal cord. J Neurosurg 72(4):523–532. https://doi.org/10.3171/jns.1990.72.4.0523. (PMID: 2319309)

    Article  CAS  PubMed  Google Scholar 

  63. Costa P, Bruno A, Bonzanino M, Massaro F, Caruso L, Vincenzo I, Ciaramitaro P, Montalenti E (2007) Somatosensory- and motor-evoked potential monitoring during spine and spinal cord surgery. Spinal Cord 45(1):86–91. https://doi.org/10.1038/sj.sc.3101934. (Epub 2006 May 2 PMID: 16670686)

    Article  CAS  PubMed  Google Scholar 

  64. Strommen JA, Crumb BA (2008) Intraoperative monitoring with free-running EMG. In: Daube JR, Mauguie ́re F (eds) Handbook of clinical neurophysiology. vol 8. Intraoperative Monitoring of Neural Function [Volume Editor Nuwer MR]. Elsevier pp.396–403

  65. Nuwer MR, Emerson RG, Galloway G, Legatt AD, Lopez J, Minahan R, Yamada T, Goodin DS, Armon C, Chaudhry V, Gronseth GS, Harden CL (2012) Evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials. J Clin Neurophysiol 29(1):101–108. https://doi.org/10.1097/WNP.0b013e31824a397e

    Article  PubMed  Google Scholar 

  66. Ali HH, Utting JE, Gray C (1970) Stimulus frequency in the detection of neuromuscular block in humans. Br J Anaesth 42(11):967–978. https://doi.org/10.1093/bja/42.11.967. (PMID: 5488360)

    Article  CAS  PubMed  Google Scholar 

  67. Garcés-Ambrossi GL, McGirt MJ, Mehta VA, Sciubba DM, Witham TF, Bydon A, Wolinksy JP, Jallo GI, Gokaslan ZL (2009) Factors associated with progression-free survival and long-term neurological outcome after resection of intramedullary spinal cord tumors: analysis of 101 consecutive cases. J Neurosurg Spine 11(5):591–599. https://doi.org/10.3171/2009.4.SPINE08159. (PMID: 19929363)

    Article  PubMed  Google Scholar 

  68. Manzano G, Green BA, Vanni S, Levi AD (2008) Contemporary management of adult intramedullary spinal tumors-pathology and neurological outcomes related to surgical resection. Spinal Cord 46(8):540–546. https://doi.org/10.1038/sc.2008.51. (Epub 2008 Jun 10 PMID: 18542096)

    Article  CAS  PubMed  Google Scholar 

  69. Matsuyama Y, Sakai Y, Katayama Y, Imagama S, Ito Z, Wakao N, Sato K, Kamiya M, Yukawa Y, Kanemura T, Yanase M, Ishiguro N (2009) Surgical results of intramedullary spinal cord tumor with spinal cord monitoring to guide extent of resection. J Neurosurg Spine 10(5):404–413. https://doi.org/10.3171/2009.2.SPINE08698. (PMID: 19442001)

    Article  PubMed  Google Scholar 

  70. Sandalcioglu IE, Gasser T, Asgari S, Lazorisak A, Engelhorn T, Egelhof T, Stolke D, Wiedemayer H (2005) Functional outcome after surgical treatment of intramedullary spinal cord tumors: experience with 78 patients. Spinal Cord 43(1):34–41. https://doi.org/10.1038/sj.sc.3101668. (PMID: 15326473)

    Article  CAS  PubMed  Google Scholar 

  71. Kucia EJ, Bambakidis NC, Chang SW, Spetzler RF (2011) Surgical technique and outcomes in the treatment of spinal cord ependymomas, part 1: intramedullary ependymomas. Operative Neurosurg 68:ons57–ons63. https://doi.org/10.1227/NEU.0b013e318208f181. (PMID: 21206303)

    Article  Google Scholar 

  72. Klekamp J (2015) Spinal ependymomas. part 1: intramedullary ependymomas. Neurosurg Focus 39(2):E6. https://doi.org/10.3171/2015.5.FOCUS15161. (PMID: 26235023)

    Article  PubMed  Google Scholar 

  73. Constantini S, Miller DC, Allen JC, Rorke LB, Freed D, Epstein FJ (2000) Radical excision of intramedullary spinal cord tumors: surgical morbidity and long-term follow-up evaluation in 164 children and young adults. J Neurosurg 93(2 Suppl):183–193. https://doi.org/10.3171/spi.2000.93.2.0183. (PMID: 11012047)

    Article  CAS  PubMed  Google Scholar 

  74. Cristante L, Herrmann H-D (1994) Surgical management of intramedullary spinal cord tumors. Neurosurgery 35(1):69–76. https://doi.org/10.1227/00006123-199407000-00011. (PMID: 7936155)

    Article  CAS  PubMed  Google Scholar 

  75. Berhouma M, Bahri K, Houissa S, Zemmel I, Khouja N, Aouidj L, Jemel H, Khaldi M (2009) Prise en charge neurochirurgicale des tumeurs intramédullaires : à propos de 45 cas. Neurochirurgie 55(3):293–302. https://doi.org/10.1016/j.neuchi.2008.02.060. (Epub 2008 Jun 5. PMID: 18538355)

    Article  CAS  PubMed  Google Scholar 

  76. Kothbauer KF, Deletis V, Epstein FJ (1998) Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus 4(5):E3. https://doi.org/10.3171/foc.1998.4.5.4. (PMID: 17154450)

    Article  Google Scholar 

  77. Levy WJ Jr, Bay J, Dohn D (1982) Spinal cord meningioma. J Neurosurg 57(6):804–812. https://doi.org/10.3171/jns.1982.57.6.0804. (PMID: 7143063)

    Article  PubMed  Google Scholar 

  78. Solero CL, Fornari M, Giombini S, Lasio G, Oliveri G, Cimino C, Pluchino F (1989) Spinal meningiomas: review of 174 operated cases. Neurosurgery 25(2):153–160 (PMID: 2671779)

    Article  CAS  PubMed  Google Scholar 

  79. Roux F-X, Nataf F, Pinaudeau M, Borne G, Devaux B, Meder J-F (1996) Intraspinal meningiomas: review of 54 cases with discussion of poor prognosis factors and modern therapeutic management. Surg Neurol 46(5):458–464. https://doi.org/10.1016/S0090-3019(96)00199-1. (PMID: 8874546)

    Article  CAS  PubMed  Google Scholar 

  80. King AT, Sharr MM, Gullan RW, Bartlett JR (1998) Spinal meningiomas: a 20-year review. Br J Neurosurg 12(6):521–526. https://doi.org/10.1080/02688699844367. (PMID: 10070460)

    Article  CAS  PubMed  Google Scholar 

  81. Gezen F, Kahraman S, Çanakci Z, Bedük A (2000) Review of 36 cases of spinal cord meningioma. Spine 25(6):727–731. https://doi.org/10.1097/00007632-200003150-00013. (PMID: 10752106)

    Article  CAS  PubMed  Google Scholar 

  82. Gottfried ON, Gluf W, Quinones-Hinojosa A, Kan P, Schmidt MH (2003) Spinal meningiomas: surgical management and outcome. Neurosurg Focus 14(6):e2. https://doi.org/10.3171/foc.2003.14.6.2. (PMID: 15669787)

    Article  PubMed  Google Scholar 

  83. Hohenberger C, Gugg C, Schmidt NO, Zeman F, Schebesch KM (2020) Functional outcome after surgical treatment of spinal meningioma. J Clin Neurosci 77:62–66. https://doi.org/10.1016/j.jocn.2020.05.042. (Epub 2020 May 12 PMID: 32409209)

    Article  PubMed  Google Scholar 

  84. Ghadirpour R, Nasi D, Iaccarino C, Giraldi D, Sabadini R, Motti L, Sala F, Servadei F (2015) Intraoperative neurophysiological monitoring for intradural extramedullary tumors: why not? Clin Neurol Neurosurg 130:140–149. https://doi.org/10.1016/j.clineuro.2015.01.007. (Epub 2015 Jan 12 PMID: 25618840)

    Article  PubMed  Google Scholar 

  85. Baba H, Furusawa N, Tanaka Y, Wada M, Imura S, Tomita K (1994) Anterior decompression and fusion for cervical myeloradiculopathy secondary to ossification of the posterior ligament. Int Orthop 18(4):204–209. https://doi.org/10.1007/BF00188323. (PMID: 8002108)

    Article  CAS  PubMed  Google Scholar 

  86. Bapat MR, Chaudhary K, Sharma A, Laheri V (2008) Surgical approach to cervical spondylotic myelopathy on the basis of radiological patterns of compression: prospective analysis of 129 cases. Eur Spine J 17(12):1651–1663. https://doi.org/10.1007/s00586-008-0792-9. (Epub 2008 Oct 23. PMID: 18946692; PMCID: PMC2587678)

    Article  PubMed  PubMed Central  Google Scholar 

  87. Epstein NE (2019) A Review of complication rates for anterior cervical diskectomy and fusion (ACDF). Surg Neurol Int 10:100. https://doi.org/10.25259/SNI-191-2019. (PMID:31528438; PMCID:PMC6744804)

    Article  PubMed  PubMed Central  Google Scholar 

  88. Marquardt G, Setzer M, Szelenyi A, Seifert V, Gerlach R (2009) Significance of serial S100b and NSE serum measurements in surgically treated patients with spondylotic cervical myelopathy. Acta Neurochir (Wien) 151(11):1439–1443. https://doi.org/10.1007/s00701-009-0408-0. (Epub 2009 Jun 5 PMID: 19499171)

    Article  CAS  PubMed  Google Scholar 

  89. Daniels AH, Hart RA, Hilibrand AS, Fish DE, Wang JC, Lord EL, Buser Z, Tortolani PJ, Stroh DA, Nassr A, Currier BL, Sebastian AS, Arnold PM, Fehlings MG, Mroz TE, Riew KD (2017) Iatrogenic spinal cord injury resulting from cervical spine surgery. Global Spine J 7(1 Suppl):84S-90S. https://doi.org/10.1177/2192568216688188. (Epub 2017 Apr 1. PMID: 28451499; PMCID: PMC5400194)

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tokuda Y, Fujimoto K, Narita Y, Mutsuga M, Terazawa S, Ito H, Matsumura Y, Uchida W, Munakata H, Ashida S, Ono T, Nishi T, Yano D, Ishida S, Kuwabara F, Akita T, Usui A (2020) Spinal cord injury following aortic arch replacement. Surg Today 50(2):106–113. https://doi.org/10.1007/s00595-019-01853-2. (Epub 2019 Jul 22 PMID: 31332530)

    Article  CAS  PubMed  Google Scholar 

  91. Preventza O, Liao JL, Olive JK, Simpson K, Critsinelis AC, Price MD, Galati M, Cornwell LD, Orozco-Sevilla V, Omer S, Jimenez E, LeMaire SA, Coselli JS (2020) Neurologic complications after the frozen elephant trunk procedure: a meta-analysis of more than 3000 patients. J Thorac Cardiovasc Surg 160(1):20-33.e4. https://doi.org/10.1016/j.jtcvs.2019.10.031. (Epub 2019 Oct 17 PMID: 31757456)

    Article  PubMed  Google Scholar 

  92. Okada K, Omura A, Kano H, Inoue T, Oka T, Minami H et al (2013) Effect of atherothrombotic aorta on outcomes of total aortic arch replacement. J Thorac Cardiovasc Surg 145:984–991

    Article  PubMed  Google Scholar 

  93. Tian DH, Wan B, Di Eusanio M, Black D, Yan TD (2013) A systematic review and meta-analysis on the safety and efficacy of the frozen elephant trunk technique in aortic arch surgery. Ann Cardiothorac Surg 2:581–591

    PubMed  PubMed Central  Google Scholar 

  94. Hamilton DK, Smith JS, Sansur CA, Glassman SD, Ames CP, Berven SH, Polly DW, Perra JH, Knapp DR, Boachie-Adjei O, McCarthy RE, Shaffrey CI (2011) Rates of new neurological deficit associated with spine surgery based on 108,419 procedures. Spine 36:1218–1228 ((Phila. Pa. 1976))

    Article  PubMed  Google Scholar 

  95. Miller SM, Donegan SW, Voigt N, Eltorai AEM, Daniels AH, Shetty T, Nguyen J, Machan JT (2019) Transcranial motor-evoked potentials for prediction of postoperative neurologic and motor deficit following surgery for thoracolumbar scoliosis. Orthop Rev. https://doi.org/10.4081/or.2019.7757. (PMID: 30996839; PMCID: PMC6452093)

    Article  Google Scholar 

  96. Thirumala PD, Crammond DJ, Loke YK, Cheng HL, Huang J, Balzer JR (2017) Diagnostic accuracy of motor evoked potentials to detect neurological deficit during idiopathic scoliosis correction: a systematic review. J Neurosurg Spine 26(3):374–383. https://doi.org/10.3171/2015.7.SPINE15466. (Epub 2016 Dec 9 PMID: 27935448)

    Article  PubMed  Google Scholar 

  97. Levy WJ, McCaffrey M, Hagichi S (1987) Motor evoked potential as a predictor of recovery in chronic spinal cord injury. Neurosurgery 20(1):138–142

    Article  CAS  PubMed  Google Scholar 

  98. Baskin DS, Simpson RK Jr (1987) Corticomotor and somatosensory evoked potential evaluation of acute spinal cord injury in the rat. Neurosurgery 20(6):871–877

    Article  CAS  PubMed  Google Scholar 

  99. Fehlings MG, Tator CH, Linden RD, Piper IR (1987) Motor evoked potentials recorded from normal and spinal cord-injured rats. Neurosurgery 20(1):125–130

    Article  CAS  PubMed  Google Scholar 

  100. Simpson RK, Baskin DS (1987) Corticomotor evoked potentials in acute and chronic blunt spinal cord injury in the rat: correlation with neurological outcome and histological damage. Neurosurgery 20:131–137

    Article  CAS  PubMed  Google Scholar 

  101. Fehlings MG, Tator CH, Linden RD (1989) The relationships among the severity of spinal cord injury, motor and somatosensory evoked potentials and spinal cord blood flow. Electroencephalogr Clin Neurophysiol 74(4):241–259

    Article  CAS  PubMed  Google Scholar 

  102. Shiau JS, Zappulla RA, Nieves J (1992) The effect of graded spinal cord injury on the extrapyramidal and pyramidal motor evoked potentials of the rat. Neurosurgery 30(1):76–84

    Article  CAS  PubMed  Google Scholar 

  103. Kakinohana M, Nakamura S, Fuchigami T, Sugahara K (2007) Transcranial motor-evoked potentials monitoring can detect spinal cord ischemia more rapidly than spinal cord-evoked potentials monitoring during aortic occlusion in rats. Eur Spine J 16(6):787–793. https://doi.org/10.1007/s00586-006-0165-1. (Epub 2006 Jun 28. PMID: 16804674; PMCID: PMC2200716)

    Article  PubMed  Google Scholar 

  104. Konrad PE, Tacker WA, Levy WJ, Reedy DP, Cook JR, Geddes LA (1987) Motor evoked potentials in the dog: effects of global ischemia on spinal cord and peripheral nerve signals. Neurosurgery 20(1):117–124. https://doi.org/10.1097/00006123-198701000-00026. (PMID: 3808251)

    Article  CAS  PubMed  Google Scholar 

  105. Ross IB, Tator CH (1991) Further studies of nimodipine in experimental spinal cord injury in the rat. J Neurotrauma 8(4):229–238. https://doi.org/10.1089/neu.1991.8.229. (PMID: 1803031)

    Article  CAS  PubMed  Google Scholar 

  106. Wang M, Meng F, Song Q, Zhang J, Dai C, Zhao Q (2017) Changes in transcranial electrical motor-evoked potentials during the early and reversible stage of permanent spinal cord ischemia predict spinal cord injury in a rabbit animal model. Exp Ther Med 14(6):5429–5437. https://doi.org/10.3892/etm.2017.5215. (Epub 2017 Sep 27. PMID: 29285072; PMCID: PMC5740705)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lips J, de Haan P, de Jager SW, Vanicky I, Jacobs MJ, Kalkman CJ (2002) The role of transcranial motor evoked potentials in predicting neurologic and histopathologic outcome after experimental spinal cord ischemia. Anesthesiology 97(1):183–191. https://doi.org/10.1097/00000542-200207000-00026. (PMID: 12131121)

    Article  PubMed  Google Scholar 

  108. Verma P (2016) Exploration of tibialis anterior in north indian cadavers in relations to frequency, morphology, morphometry and its clinical importance. Int J Anat Res 4(2):2376–2380. https://doi.org/10.16965/ijar.2016.233

    Article  Google Scholar 

  109. Wickiewicz TL, Roy RR, Powell PL, Edgerton VR (1983) Muscle architecture of the human lower limb. Clin Orthop and Related Research 179:275–283 (PMID: 6617027)

    Article  Google Scholar 

  110. Jiang H, Guo ET, Ji ZL, Zhang ML, Lu V (1995) One-stage microneurovascular free abductor hallucis muscle transplantation for reanimation of facial paralysis. Plast Reconstr Surg 96(1):78–85 (PMID: 7604134)

    Article  CAS  PubMed  Google Scholar 

  111. Agawany AE, Meguid EA (2010) Mode of insertion of the abductor hallucis muscle in human feet and its arterial supply. Folia Morphol (Warsz) 69:54–61 (PMID: 20235052)

    CAS  PubMed  Google Scholar 

  112. Chittoria RK, Pratap H, Yekappa SH (2015) Abductor hallucis: anatomical variation and its clinical implications in the reconstruction of chronic nonhealing ulcers and defects of foot. Adv Wound Care (New Rochelle) 4(12):719–723. https://doi.org/10.1089/wound.2014.0617. (PMID:26634184,PMCID:PMC4651031)

    Article  PubMed  Google Scholar 

  113. Sirasanagandla SR, Swamy RS, Nayak SB, Somayaji NS, Rao MK, Bhat KM (2013) Analysis of the morphometry and variations in the extensor digitorum brevis muscle: an anatomic guide for muscle flap and tendon transfer surgical dissection. Anat Cell Biol 46(3):198–202. https://doi.org/10.5115/acb.2013.46.3.198. (Epub 2013 Sep 30. PMID: 24179695; PMCID: PMC3811858)

    Article  PubMed  PubMed Central  Google Scholar 

  114. del Piñal F, Herrero F (2000) Extensor digitorum brevis free flap: anatomic study and further clinical applications. Plast Reconstr Surg 105:1347–1356

    Article  PubMed  Google Scholar 

  115. Tamarova ZA, Shapobalov AI, Karamian OA (1972) Kurchavyi GG (1972) Kortiko-piramidnye i kortiko-ekstrapiramidnye sinapticheskie vliianiia na poiasnichnye motoneirony obez’iany [Corticopyramidal and corticoextrapyramidal synaptic influences on the lumbar motoneurons of the monkey. Neirofiziologiia 4(6):587–596 (PMID: 4633210)

    CAS  PubMed  Google Scholar 

  116. Jankowska E, Padel Y, Tanaka R (1975) Projections of pyramidal tract cells to alpha-motoneurones innervating hind-limb muscles in the monkey. J Physiol 249(3):637–667. https://doi.org/10.1113/jphysiol.1975.sp011035. (PMID:1177109;PMCID:PMC1309597)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Phillips CG, Porter R (1964) The pyramidal projection to motoneurones of some muscle groups of the baboon’s forelimb. Prog Brain Res 12:222–245. https://doi.org/10.1016/s0079-6123(08)60625-1. (PMID: 14202441)

    Article  CAS  PubMed  Google Scholar 

  118. Clough JF, Kernell D, Phillips CG (1968) The distribution of monosynaptic excitation from the pyramidal tract and from primary spindle afferents to motoneurones of the baboon’s hand and forearm. J Physiol 198(1):145–166. https://doi.org/10.1113/jphysiol.1968.sp008598. (PMID:16992310;PMCID:PMC1365314)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Deletis V (2020) Intraoperative neurophysiology and methodologies used to monitor the functional integrity of the motor system. In: Deletis V, Shils J, Sala F, Seidel K (eds) Neurophysiology in neurosurgery. A modern approach, 2nd edn, pp 17–23

  120. Heckman CJ, Mottram C, Quinlan K, Theiss R, Schuster J (2009) Motoneuron excitability: the importance of neuromodulatory inputs. Clin Neurophysiol 120(12):2040–2054. https://doi.org/10.1016/j.clinph.2009.08.009. (PMID: 19783207; PMCID: PMC7312725)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Costa.

Ethics declarations

Conflict of interest

All authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, P., Borio, A., Marmolino, S. et al. The role of intraoperative extensor digitorum brevis muscle MEPs in spinal surgery. Eur Spine J 32, 3360–3369 (2023). https://doi.org/10.1007/s00586-023-07811-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-07811-4

Keywords

Navigation