Skip to main content

Advertisement

Log in

Are serum thyroid hormone, parathormone, calcium, and vitamin D levels associated with lumbar spine degeneration? A cross-sectional observational clinical study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Low back pain (LBP) impairs the quality of life and rises healthcare costs. The association of spine degeneration and LBP with metabolic disorders have been reported, previously. However, metabolic processes related with spine degeneration remained unclear. We aimed to analyze whether serum thyroid hormones, parathormone, calcium, and vitamin D levels were associated with lumbar intervertebral disc degeneration (IVDD), Modic changes, and fatty infiltration in the paraspinal muscles.

Methods

We cross-sectionally analyzed a retrospective database. Patients who visited internal medicine outpatient clinics with suspect of endocrine disorders and chronic LBP were searched. Patients with biochemistry results within 1 week before lumbar spine magnetic resonance imaging (MRI) were included. Age- and gender-matched cohorts were made-up and analyzed.

Results

Patients with higher serum free thyroxine levels were more likely to have severe IVDD. They were also more likely to have fattier multifidus and erector spinae at upper lumbar levels, less fatty psoas and less Modic changes at lower lumbar levels. Higher PTH levels were observed in patients with severe IVDD at L4-L5 level. Patients with lower serum vitamin D and calcium levels had more Modic changes and fattier paraspinal muscles at upper lumbar levels.

Conclusion

Serum hormone, vitamin D, and calcium levels were associated with not only IVDD and Modic changes but also with fatty infiltration in the paraspinal muscles, mainly at upper lumbar levels in patients with symptomatic backache presenting to a tertiary care center. Complex inflammatory, metabolic, and mechanical factors present in the backstage of spine degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Balague F, Mannion AF, Pellise F et al (2012) Non-specific low back pain. Lancet 379:482–491. https://doi.org/10.1016/S0140-6736(11)60610-7

    Article  PubMed  Google Scholar 

  2. Maher C, Underwood M, Buchbinder R (2017) Non-specific low back pain. Lancet 389:736–747. https://doi.org/10.1016/S0140-6736(16)30970-9

    Article  PubMed  Google Scholar 

  3. Airaksinen O, Brox JI, Cedraschi C et al (2006) Chapter 4. European guidelines for the management of chronic nonspecific low back pain. Eur Spine J 15:192–300. https://doi.org/10.1007/s00586-006-1072-1

    Article  Google Scholar 

  4. Eksi MS, Orhun O, Yasar AH et al (2022) At what speed does spinal degeneration gear up?: aging paradigm in patients with low back pain. Clin Neurol Neurosurg 215:107187. https://doi.org/10.1016/j.clineuro.2022.107187

    Article  PubMed  Google Scholar 

  5. Lv B, Yuan J, Ding H et al (2019) Relationship between endplate defects, modic change, disc degeneration, and facet joint degeneration in patients with low back pain. Biomed Res Int 2019:9369853. https://doi.org/10.1155/2019/9369853

    Article  PubMed Central  PubMed  Google Scholar 

  6. Umimura T, Orita S, Inage K et al (2021) Percutaneously-quantified advanced glycation end-products (AGEs) accumulation associates with low back pain and lower extremity symptoms in middle-aged low back pain patients. J Clin Neurosci 84:15–22. https://doi.org/10.1016/j.jocn.2020.12.005

    Article  CAS  PubMed  Google Scholar 

  7. Eksi MS, Kara M, Ozcan-Eksi EE et al (2020) Is diabetes mellitus a risk factor for modic changes?: a novel model to understand the association between intervertebral disc degeneration and end-plate changes. J Orthop Sci 25:571–575. https://doi.org/10.1016/j.jos.2019.09.005

    Article  PubMed  Google Scholar 

  8. Lambrechts MJ, Maryan K, Whitman W et al (2021) Comorbidities associated with cervical spine degenerative disc disease. J Orthop 26:98–102. https://doi.org/10.1016/j.jor.2021.07.008

    Article  PubMed Central  PubMed  Google Scholar 

  9. Fujita N, Ishihara S, Michikawa T et al (2020) Potential association of metabolic and musculoskeletal disorders with lumbar intervertebral disc degeneration: cross-sectional study using medical checkup data. J Orthop Sci 25:384–388. https://doi.org/10.1016/j.jos.2019.05.011

    Article  PubMed  Google Scholar 

  10. Fields AJ, Berg-Johansen B, Metz LN et al (2015) Alterations in intervertebral disc composition, matrix homeostasis and biomechanical behavior in the UCD-T2DM rat model of type 2 diabetes. J Orthop Res 33:738–746. https://doi.org/10.1002/jor.22807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cannata F, Vadala G, Ambrosio L et al (2020) Intervertebral disc degeneration: a focus on obesity and type 2 diabetes. Diabetes Metab Res Rev 36:e3224. https://doi.org/10.1002/dmrr.3224

    Article  PubMed  Google Scholar 

  12. Teraguchi M, Yoshimura N, Hashizume H et al (2016) Metabolic syndrome components are associated with intervertebral disc degeneration: the wakayama spine study. PLoS ONE 11:e0147565. https://doi.org/10.1371/journal.pone.0147565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gil-Cosano JJ, Gracia-Marco L, Ubago-Guisado E et al (2020) Inflammatory markers and bone mass in children with overweight/obesity: the role of muscular fitness. Pediatr Res 87:42–47. https://doi.org/10.1038/s41390-019-0572-8

    Article  PubMed  Google Scholar 

  14. Ozcan-Eksi EE, Turgut VU, Kucuksuleymanoglu D et al (2021) Obesity could be associated with poor paraspinal muscle quality at upper lumbar levels and degenerated spine at lower lumbar levels: Is this a domino effect? J Clin Neurosci 94:120–127. https://doi.org/10.1016/j.jocn.2021.10.005

    Article  PubMed  Google Scholar 

  15. Baqi L, Payer J, Killinger Z et al (2010) Thyrotropin versus thyroid hormone in regulating bone density and turnover in premenopausal women. Endocr Regul 44:57–63. https://doi.org/10.4149/endo_2010_02_57

    Article  CAS  PubMed  Google Scholar 

  16. Meier C, Beat M, Guglielmetti M et al (2004) Restoration of euthyroidism accelerates bone turnover in patients with subclinical hypothyroidism: a randomized controlled trial. Osteoporos Int 15:209–216. https://doi.org/10.1007/s00198-003-1527-8

    Article  PubMed  Google Scholar 

  17. Williams GR (2013) Thyroid hormone actions in cartilage and bone. Eur Thyroid J 2:3–13. https://doi.org/10.1159/000345548

    Article  CAS  PubMed  Google Scholar 

  18. Shrestha A, Cohen HW, Tagoe CE (2016) Association of spinal degenerative disc disease with thyroid autoimmunity. Clin Exp Rheumatol 34:296–302

    PubMed  Google Scholar 

  19. Toktas ZO, Eksi MS, Yilmaz B et al (2015) Association of collagen I, IX and vitamin D receptor gene polymorphisms with radiological severity of intervertebral disc degeneration in Southern European Ancestor. Eur Spine J 24:2432–2441. https://doi.org/10.1007/s00586-015-4206-5

    Article  PubMed  Google Scholar 

  20. Li Y, Wei Y, Li H et al (2022) Exogenous parathyroid hormone alleviates intervertebral disc degeneration through the sonic hedgehog signalling pathway mediated by CREB. Oxid Med Cell Longev 2022:9955677. https://doi.org/10.1155/2022/9955677

    Article  PubMed Central  PubMed  Google Scholar 

  21. Tseng MC, Lim J, Chu YC et al (2022) Dynamic pressure stimulation upregulates collagen ii and aggrecan in nucleus pulposus cells through calcium signaling. Spine (Phila Pa 1976) 47:1111–1119. https://doi.org/10.1097/BRS.0000000000004286

    Article  PubMed  Google Scholar 

  22. Pfirrmann CW, Metzdorf A, Zanetti M et al (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26:1873–1878. https://doi.org/10.1097/00007632-200109010-00011

    Article  CAS  PubMed  Google Scholar 

  23. Ozcan-Eksi EE, Eksi MS, Akcal MA (2019) Severe lumbar intervertebral disc degeneration is associated with modic changes and fatty infiltration in the paraspinal muscles at all lumbar levels, except for L1–L2: a cross-sectional analysis of 50 symptomatic women and 50 age-matched symptomatic men. World Neurosurg 122:e1069–e1077. https://doi.org/10.1016/j.wneu.2018.10.229

    Article  PubMed  Google Scholar 

  24. Modic MT, Steinberg PM, Ross JS et al (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–199. https://doi.org/10.1148/radiology.166.1.3336678

    Article  CAS  PubMed  Google Scholar 

  25. Modic MT, Masaryk TJ, Ross JS et al (1988) Imaging of degenerative disk disease. Radiology 168:177–186. https://doi.org/10.1148/radiology.168.1.3289089

    Article  CAS  PubMed  Google Scholar 

  26. Goutallier D, Postel JM, Bernageau J et al (1994) Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res 304:78–83

    Article  Google Scholar 

  27. Berikol G, Eksi MS, Aydin L et al (2022) Subcutaneous fat index: a reliable tool for lumbar spine studies. Eur Radiol 32:6504–6513. https://doi.org/10.1007/s00330-022-08775-7

    Article  CAS  PubMed  Google Scholar 

  28. Ozcan-Eksi EE, Kara M, Berikol G et al (2021) A new radiological index for the assessment of higher body fat status and lumbar spine degeneration. Skeletal Radiol. https://doi.org/10.1007/s00256-021-03957-8

    Article  PubMed  Google Scholar 

  29. Grant MP, Epure LM, Bokhari R et al (2016) Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc. Eur Cell Mater 32:137–151. https://doi.org/10.22203/ecm.v032a09

    Article  CAS  PubMed  Google Scholar 

  30. DePalma MJ, Ketchum JM, Saullo T (2011) What is the source of chronic low back pain and does age play a role? Pain Med 12:224–233. https://doi.org/10.1111/j.1526-4637.2010.01045.x

    Article  PubMed  Google Scholar 

  31. Zolfaghari F, Faridmoayer A, Soleymani B et al (2016) A survey of vitamin d status in patients with degenerative diseases of the spine. Asian Spine J 10:834–842. https://doi.org/10.4184/asj.2016.10.5.834

    Article  PubMed Central  PubMed  Google Scholar 

  32. Grunhagen T, Shirazi-Adl A, Fairbank JC et al (2011) Intervertebral disk nutrition: a review of factors influencing concentrations of nutrients and metabolites. Orthop Clin North Am 42(465–477):vii. https://doi.org/10.1016/j.ocl.2011.07.010

    Article  PubMed  Google Scholar 

  33. Masala S, Anselmetti GC, Marcia S et al (2014) Treatment of painful Modic type I changes by vertebral augmentation with bioactive resorbable bone cement. Neuroradiology 56:637–645. https://doi.org/10.1007/s00234-014-1372-9

    Article  PubMed  Google Scholar 

  34. Eksi MS, Ozcan-Eksi EE, Orhun O et al (2020) Association between facet joint orientation/tropism and lumbar intervertebral disc degeneration. Br J Neurosurg. https://doi.org/10.1080/02688697.2020.1864289

    Article  PubMed  Google Scholar 

  35. Eksi MS, Ozcan-Eksi EE, Orhun O et al (2020) Proposal for a new scoring system for spinal degeneration: Mo-Fi-Disc. Clin Neurol Neurosurg 198:106120. https://doi.org/10.1016/j.clineuro.2020.106120

    Article  PubMed  Google Scholar 

  36. Newell E, Driscoll M (2021) Investigation of physiological stress shielding within lumbar spinal tissue as a contributor to unilateral low back pain: a finite element study. Comput Biol Med 133:104351. https://doi.org/10.1016/j.compbiomed.2021.104351

    Article  PubMed  Google Scholar 

  37. Goubert D, Oosterwijck JV, Meeus M et al (2016) Structural changes of lumbar muscles in non-specific low back pain: a systematic review. Pain Physician 19:E985–E1000

    PubMed  Google Scholar 

  38. Ozcan-Eksi EE, Eksi MS, Turgut VU et al (2021) Reciprocal relationship between multifidus and psoas at L4–L5 level in women with low back pain. Br J Neurosurg 35:220–228. https://doi.org/10.1080/02688697.2020.1783434

    Article  PubMed  Google Scholar 

  39. Murata Y, Nakamura E, Tsukamoto M et al (2021) Longitudinal study of risk factors for decreased cross-sectional area of psoas major and paraspinal muscle in 1849 individuals. Sci Rep 11:16986. https://doi.org/10.1038/s41598-021-96448-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Brown EM (2013) Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract Res Clin Endocrinol Metab 27:333–343. https://doi.org/10.1016/j.beem.2013.02.006

    Article  CAS  PubMed  Google Scholar 

  41. Canaff L, Hendy GN (2005) Calcium-sensing receptor gene transcription is up-regulated by the proinflammatory cytokine, interleukin-1beta. Role of the NF-kappaB PATHWAY and kappaB elements. J Biol Chem 280:14177–14188. https://doi.org/10.1074/jbc.M408587200

    Article  CAS  PubMed  Google Scholar 

  42. Thankam FG, Dilisio MF, Agrawal DK (2016) Immunobiological factors aggravating the fatty infiltration on tendons and muscles in rotator cuff lesions. Mol Cell Biochem 417:17–33. https://doi.org/10.1007/s11010-016-2710-5

    Article  CAS  PubMed  Google Scholar 

  43. Bergmark A (1989) Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop Scand Suppl 230:1–54. https://doi.org/10.3109/17453678909154177

    Article  CAS  PubMed  Google Scholar 

  44. Panjabi MM (1992) The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord 5:383–389. https://doi.org/10.1097/00002517-199212000-00001. (Discussion 397)

    Article  CAS  PubMed  Google Scholar 

  45. Kjaer P, Bendix T, Sorensen JS et al (2007) Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain? BMC Med 5:2. https://doi.org/10.1186/1741-7015-5-2

    Article  PubMed Central  PubMed  Google Scholar 

  46. Adams MA, Green TP, Dolan P (1994) The strength in anterior bending of lumbar intervertebral discs. Spine (Phila Pa1976) 19:2197–2203. https://doi.org/10.1097/00007632-199410000-00014

    Article  CAS  Google Scholar 

  47. Barker KL, Shamley DR, Jackson D (2004) Changes in the cross-sectional area of multifidus and psoas in patients with unilateral back pain: the relationship to pain and disability. Spine (Phila Pa 1976) 29:515–519. https://doi.org/10.1097/01.brs.0000144405.11661.eb

    Article  Google Scholar 

  48. Beneck GJ, Kulig K (2012) Multifidus atrophy is localized and bilateral in active persons with chronic unilateral low back pain. Arch Phys Med Rehabil 93:300–306. https://doi.org/10.1016/j.apmr.2011.09.017

    Article  PubMed  Google Scholar 

  49. Kim TH, Lee BH, Lee HM et al (2013) Prevalence of vitamin D deficiency in patients with lumbar spinal stenosis and its relationship with pain. Pain Physician 16:165–176

    PubMed  Google Scholar 

  50. Al Faraj S, Al Mutairi K (2003) Vitamin D deficiency and chronic low back pain in Saudi Arabia. Spine (Phila Pa 1976) 28:177–179. https://doi.org/10.1097/00007632-200301150-00015

    Article  PubMed  Google Scholar 

  51. Stoker GE, Buchowski JM, Bridwell KH et al (2013) Preoperative vitamin D status of adults undergoing surgical spinal fusion. Spine (Phila Pa 1976) 38:507–515. https://doi.org/10.1097/BRS.0b013e3182739ad1

    Article  PubMed  Google Scholar 

  52. Xue J, Song Y, Liu H et al (2021) Vitamin D receptor gene polymorphisms and risk of intervertebral disc degeneration: an updated meta-analysis based on 23 studies. Medicine (Baltimore) 100:25922. https://doi.org/10.1097/MD.0000000000025922

    Article  CAS  Google Scholar 

  53. Huang H, Cheng S, Zheng T et al (2019) Vitamin D retards intervertebral disc degeneration through inactivation of the NF-kappaB pathway in mice. Am J Transl Res 11:2496–2506

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Johansen JV, Manniche C, Kjaer P (2013) Vitamin D levels appear to be normal in Danish patients attending secondary care for low back pain and a weak positive correlation between serum level Vitamin D and Modic changes was demonstrated: a cross-sectional cohort study of consecutive patients with non-specific low back pain. BMC Musculoskelet Disord 14:78. https://doi.org/10.1186/1471-2474-14-78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Albert HB, Kjaer P, Jensen TS et al (2008) Modic changes, possible causes and relation to low back pain. Med Hypotheses 70:361–368. https://doi.org/10.1016/j.mehy.2007.05.014

    Article  CAS  PubMed  Google Scholar 

  56. Mosekilde L (2008) Primary hyperparathyroidism and the skeleton. Clin Endocrinol (Oxf) 69:1–19. https://doi.org/10.1111/j.1365-2265.2007.03162.x

    Article  CAS  PubMed  Google Scholar 

  57. Snijder MB, van Schoor NM, Pluijm SM et al (2006) Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metab 91:2980–2985. https://doi.org/10.1210/jc.2006-0510

    Article  CAS  PubMed  Google Scholar 

  58. Endo I, Inoue D, Mitsui T et al (2003) Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors. Endocrinology 144:5138–5144. https://doi.org/10.1210/en.2003-0502

    Article  CAS  PubMed  Google Scholar 

  59. Bhat M, Kalam R, Qadri SS et al (2013) Vitamin D deficiency-induced muscle wasting occurs through the ubiquitin proteasome pathway and is partially corrected by calcium in male rats. Endocrinology 154:4018–4029. https://doi.org/10.1210/en.2013-1369

    Article  CAS  PubMed  Google Scholar 

  60. Bang WS, Lee DH, Kim KT et al (2018) Relationships between vitamin D and paraspinal muscle: human data and experimental rat model analysis. Spine J 18:1053–1061. https://doi.org/10.1016/j.spinee.2018.01.007

    Article  PubMed  Google Scholar 

  61. Robson H, Siebler T, Stevens DA et al (2000) Thyroid hormone acts directly on growth plate chondrocytes to promote hypertrophic differentiation and inhibit clonal expansion and cell proliferation. Endocrinology 141:3887–3897. https://doi.org/10.1210/endo.141.10.7733

    Article  CAS  PubMed  Google Scholar 

  62. Vortkamp A, Lee K, Lanske B et al (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:613–622. https://doi.org/10.1126/science.273.5275.613

    Article  CAS  PubMed  Google Scholar 

  63. Minina E, Kreschel C, Naski MC et al (2002) Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 3:439–449. https://doi.org/10.1016/s1534-5807(02)00261-7

    Article  CAS  PubMed  Google Scholar 

  64. St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13:2072–2086. https://doi.org/10.1101/gad.13.16.2072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Dentice M, Bandyopadhyay A, Gereben B et al (2005) The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Nat Cell Biol 7:698–705. https://doi.org/10.1038/ncb1272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Stevens DA, Hasserjian RP, Robson H et al (2000) Thyroid hormones regulate hypertrophic chondrocyte differentiation and expression of parathyroid hormone-related peptide and its receptor during endochondral bone formation. J Bone Miner Res 15:2431–2442. https://doi.org/10.1359/jbmr.2000.15.12.2431

    Article  CAS  PubMed  Google Scholar 

  67. Ladenson PW, Kristensen JD, Ridgway EC et al (2010) Use of the thyroid hormone analogue eprotirome in statin-treated dyslipidemia. N Engl J Med 362:906–916. https://doi.org/10.1056/NEJMoa0905633

    Article  CAS  PubMed  Google Scholar 

  68. Bochukova E, Schoenmakers N, Agostini M et al (2012) A mutation in the thyroid hormone receptor alpha gene. N Engl J Med 366:243–249. https://doi.org/10.1056/NEJMoa1110296

    Article  CAS  PubMed  Google Scholar 

  69. van Mullem A, van Heerebeek R, Chrysis D et al (2012) Clinical phenotype and mutant TRalpha1. N Engl J Med 366:1451–1453. https://doi.org/10.1056/NEJMc1113940

    Article  PubMed  Google Scholar 

  70. Pilarska M, Wrzosek A, Pikula S et al (1991) Thyroid hormones control lipid composition and membrane fluidity of skeletal muscle sarcolemma. Biochim Biophys Acta 1068:167–173. https://doi.org/10.1016/0005-2736(91)90206-n

    Article  CAS  PubMed  Google Scholar 

  71. Havekes B, Sauerwein HP (2010) Adipocyte-myocyte crosstalk in skeletal muscle insulin resistance; is there a role for thyroid hormone? Curr Opin Clin Nutr Metab Care 13:641–646. https://doi.org/10.1097/MCO.0b013e32833e341d

    Article  CAS  PubMed  Google Scholar 

  72. Vaughan M (1967) An in vitro effect of triiodothyronine on rat adipose tissue. J Clin Invest 46:1482–1491. https://doi.org/10.1172/JCI105640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Dimitriadis G, Mitrou P, Lambadiari V et al (2006) Glucose and lipid fluxes in the adipose tissue after meal ingestion in hyperthyroidism. J Clin Endocrinol Metab 91:1112–1118. https://doi.org/10.1210/jc.2005-0960

    Article  CAS  PubMed  Google Scholar 

  74. Bogduk N, Macintosh JE, Pearcy MJ (1992) A universal model of the lumbar back muscles in the upright position. Spine (Phila Pa 1976) 17:897–913. https://doi.org/10.1097/00007632-199208000-00007

    Article  CAS  PubMed  Google Scholar 

  75. Bogduk N, Pearcy M, Hadfield G (1992) Anatomy and biomechanics of psoas major. Clin Biomech (Bristol, Avon) 7:109–119. https://doi.org/10.1016/0268-0033(92)90024-X

    Article  CAS  PubMed  Google Scholar 

  76. MacDonald D, Moseley GL, Hodges PW (2010) People with recurrent low back pain respond differently to trunk loading despite remission from symptoms. Spine (Phila Pa 1976) 35:818–824. https://doi.org/10.1097/BRS.0b013e3181bc98f1

    Article  PubMed  Google Scholar 

  77. MacDonald D, Moseley LG, Hodges PW (2009) Why do some patients keep hurting their back? Evidence of ongoing back muscle dysfunction during remission from recurrent back pain. Pain 142:183–188. https://doi.org/10.1016/j.pain.2008.12.002

    Article  PubMed  Google Scholar 

  78. Macdonald DA, Dawson AP, Hodges PW (2011) Behavior of the lumbar multifidus during lower extremity movements in people with recurrent low back pain during symptom remission. J Orthop Sports Phys Ther 41:155–164. https://doi.org/10.2519/jospt.2011.3410

    Article  PubMed  Google Scholar 

  79. Kanna RM, Shetty AP, Rajasekaran S (2014) Patterns of lumbar disc degeneration are different in degenerative disc disease and disc prolapse magnetic resonance imaging analysis of 224 patients. Spine J 14:300–307. https://doi.org/10.1016/j.spinee.2013.10.042

    Article  PubMed  Google Scholar 

  80. Pritzker KP (1977) Aging and degeneration in the lumbar intervertebral disc. Orthop Clin North Am 8:66–77

    Article  CAS  PubMed  Google Scholar 

  81. Brant-Zawadzki MN, Jensen MC, Obuchowski N et al (1995) Interobserver and intraobserver variability in interpretation of lumbar disc abnormalities. A comparison of two nomenclatures. Spine (Phila Pa 1976) 20:1257–1263. https://doi.org/10.1097/00007632-199506000-00010. (Discussion 1264)

    Article  CAS  PubMed  Google Scholar 

  82. Breton G (1991) Is that a bulging disk, a small herniation or a moderate protrusion? Can Assoc Radiol J 42:318

    CAS  PubMed  Google Scholar 

  83. Milette PC (2001) Reporting lumbar disk abnormalities: at last, consensus! AJNR Am J Neuroradiol 22:428–429

    CAS  PubMed  Google Scholar 

  84. Moore RJ, Vernon-Roberts B, Fraser RD et al (1996) The origin and fate of herniated lumbar intervertebral disc tissue. Spine (Phila Pa 1976) 21:2149–2155. https://doi.org/10.1097/00007632-199609150-00018

    Article  CAS  PubMed  Google Scholar 

  85. Schmid G, Witteler A, Willburger R et al (2004) Lumbar disk herniation: correlation of histologic findings with marrow signal intensity changes in vertebral endplates at MR imaging. Radiology 231:352–358. https://doi.org/10.1148/radiol.2312021708

    Article  PubMed  Google Scholar 

  86. Willburger RE, Ehiosun UK, Kuhnen C et al (2004) Clinical symptoms in lumbar disc herniations and their correlation to the histological composition of the extruded disc material. Spine (Phila Pa 1976) 29:1655–1661. https://doi.org/10.1097/01.brs.0000133645.94159.64

    Article  PubMed  Google Scholar 

  87. Boos N, Rieder R, Schade V et al (1995) 1995 Volvo award in clinical sciences. The diagnostic accuracy of magnetic resonance imaging, work perception, and psychosocial factors in identifying symptomatic disc herniations. Spine (Phila Pa 1976) 20:2613–2625. https://doi.org/10.1097/00007632-199512150-00002

    Article  CAS  PubMed  Google Scholar 

  88. So TY, Diacinti D, Leung JCS et al (2022) Lower prevalence and severity of degenerative changes in the lumbar spine in elderly hong kong chinese compared with age-matched italian caucasian women. Spine (Phila Pa 1976) 47(24):1710–1718. https://doi.org/10.1097/BRS.0000000000004445

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We dedicate this study to the ones who lost their lives or beloved ones in the great earthquake disaster in Turkey and Syria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Şakir Ekşi.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest related with the current study content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekşi, M.Ş., Orhun, Ö., Demir, Y.N. et al. Are serum thyroid hormone, parathormone, calcium, and vitamin D levels associated with lumbar spine degeneration? A cross-sectional observational clinical study. Eur Spine J 32, 1561–1574 (2023). https://doi.org/10.1007/s00586-023-07673-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-07673-w

Keywords

Navigation