Skip to main content

Advertisement

Log in

Anterior column reconstruction of the lumbar spine in the lateral decubitus position: anatomical and patient-related considerations for ALIF, anterior-to-psoas, and transpsoas LLIF approaches

  • Review article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Circumferential (AP) lumbar fusion surgery is an effective treatment for degenerative and deformity conditions of the spine. The lateral decubitus position allows for simultaneous access to the anterior and posterior aspects of the spine, enabling instrumentation of both columns without the need for patient repositioning. This paper seeks to outline the anatomical and patient-related considerations in anterior column reconstruction of the lumbar spine from L1–S1 in the lateral decubitus position.

Methods

We detail the anatomic considerations of the lateral ALIF, transpsoas, and anterior-to-psoas surgical approaches from surgeon experience and comprehensive literature review.

Results

Single-position AP surgery allows simultaneous access to the anterior and posterior column and may combine ALIF, LLIF, and minimally invasive posterior instrumentation techniques from L1–S1 without patient repositioning. Careful history, physical examination, and imaging review optimize safety and efficacy of lateral ALIF or LLIF surgery. An excellent understanding of patient spinal and abdominal anatomy is necessary. Each approach has relative advantages and disadvantages according to the disc level, skeletal, vascular, and psoas anatomy.

Conclusions

A development of a framework to analyze these factors will result in improved patient outcomes and a reduction in complications for lateral ALIF, transpsoas, and anterior-to-psoas surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Castellvi AE, Nienke TW, Marulanda GA, Murtagh RD, Santoni BG (2014) Indirect decompression of lumbar stenosis with transpsoas interbody cages and percutaneous posterior instrumentation. Clin Orthop Relat Res 472:1784–1791. https://doi.org/10.1007/s11999-014-3464-6

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cho W, Sokolowski MJ, Mehbod AA, Denis F, Garvey TA, Perl J, Transfeldt EE (2013) MRI measurement of neuroforaminal dimension at the index and supradjacent levels after anterior lumbar interbody fusion: a prospective study. Clin Orthop Surg 5:49–54. https://doi.org/10.4055/cios.2013.5.1.49

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hsieh PC, Koski TR, O’Shaughnessy BA, Sugrue P, Salehi S, Ondra S, Liu JC (2007) Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody fusion: implications for the restoration of foraminal height, local disc angle, lumbar lordosis, and sagittal balance. J Neurosurg Spine 7:379–386. https://doi.org/10.3171/spi-07/10/379

    Article  PubMed  Google Scholar 

  4. Lang G, Perrech M, Navarro-Ramirez R, Hussain I, Pennicooke B, Maryam F, Avila MJ, Hartl R (2017) Potential and limitations of neural decompression in extreme lateral interbody fusion-a systematic review. World Neurosurg 101:99–113. https://doi.org/10.1016/j.wneu.2017.01.080

    Article  PubMed  Google Scholar 

  5. Nomura H, Yamashita A, Watanabe T, Shirasawa K (2019) Quantitative analysis of indirect decompression in extreme lateral interbody fusion and posterior spinal fusion with a percutaneous pedicle screw system for lumbar spinal stenosis. J Spine Surg 5:266–272. https://doi.org/10.21037/jss.2019.06.03

    Article  PubMed  PubMed Central  Google Scholar 

  6. Phillips FM, Isaacs RE, Rodgers WB, Khajavi K, Tohmeh AG, Deviren V, Peterson MD, Hyde J, Kurd M (2013) Adult degenerative scoliosis treated with XLIF: clinical and radiographical results of a prospective multicenter study with 24-month follow-up. Spine (Phila Pa 1976) 38:1853–1861. doi: https://doi.org/10.1097/BRS.0b013e3182a43f0b

  7. Rao PJ, Maharaj MM, Phan K, Lakshan Abeygunasekara M, Mobbs RJ (2015) Indirect foraminal decompression after anterior lumbar interbody fusion: a prospective radiographic study using a new pedicle-to-pedicle technique. Spine J 15:817–824. https://doi.org/10.1016/j.spinee.2014.12.019

    Article  PubMed  Google Scholar 

  8. Shin SH, Choi WG, Hwang BW, Tsang YS, Chung ER, Lee HC, Lee SJ, Lee SH (2013) Microscopic anterior foraminal decompression combined with anterior lumbar interbody fusion. Spine J 13:1190–1199. https://doi.org/10.1016/j.spinee.2013.07.458

    Article  PubMed  Google Scholar 

  9. Buckland AJ, Ashayeri K, Leon C, Manning J, Eisen L, Medley M, Protopsaltis TS, Thomas JA (2020) Single position circumferential fusion improves operative efficiency, reduces complications and length of stay compared with traditional circumferential fusion. Spine J. https://doi.org/10.1016/j.spinee.2020.11.002

    Article  PubMed  Google Scholar 

  10. Manning J, Wang E, Varlotta C, Woo D, Ayres E, Eisen L, Bendo J, Goldstein J, Spivak J, Protopsaltis TS, Passias PG, Buckland AJ (2020) The effect of vascular approach surgeons on perioperative complications in lateral transpsoas lumbar interbody fusions. Spine J 20:313–320. https://doi.org/10.1016/j.spinee.2019.10.013

    Article  PubMed  Google Scholar 

  11. Garg J, Woo K, Hirsch J, Bruffey JD, Dilley RB (2010) Vascular complications of exposure for anterior lumbar interbody fusion. J Vasc Surg 51:946–950; discussion 950. doi: https://doi.org/10.1016/j.jvs.2009.11.039

  12. Youssef JA, McAfee PC, Patty CA, Raley E, DeBauche S, Shucosky E, Chotikul L (2010) Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine (Phila Pa 1976) 35:S302–311. doi: https://doi.org/10.1097/BRS.0b013e3182023438

  13. Smith MW, Rahn KA, Shugart RM, Belschner CD, Stout KS, Cheng I (2011) Comparison of perioperative parameters and complications observed in the anterior exposure of the lumbar spine by a spine surgeon with and without the assistance of an access surgeon. Spine J 11:389–394. https://doi.org/10.1016/j.spinee.2011.03.014

    Article  PubMed  Google Scholar 

  14. Phan K, Xu J, Scherman DB, Rao PJ, Mobbs RJ (2017) Anterior lumbar interbody fusion with and without an "access surgeon": a systematic review and meta-analysis. Spine (Phila Pa 1976) 42:E592-e601. https://doi.org/10.1097/brs.0000000000001905

  15. Rodgers SD, Marascalchi BJ, Grobelny BT, Smith ML, Samadani U (2013) Revision surgery after interbody fusion with rhBMP-2: a cautionary tale for spine surgeons. J Neurosurg Spine 18:582–587. https://doi.org/10.3171/2013.3.Spine12377

    Article  PubMed  Google Scholar 

  16. Burkus JK, Dryer RF, Peloza JH (2013) Retrograde ejaculation following single-level anterior lumbar surgery with or without recombinant human bone morphogenetic protein-2 in 5 randomized controlled trials: clinical article. J Neurosurg Spine 18:112–121. https://doi.org/10.3171/2012.10.Spine11908

    Article  PubMed  Google Scholar 

  17. Mobbs RJ, Phan K, Daly D, Rao PJ, Lennox A (2016) Approach-related complications of anterior lumbar interbody fusion: results of a combined spine and vascular surgical team. Global Spine J 6:147–154. https://doi.org/10.1055/s-0035-1557141

    Article  PubMed  Google Scholar 

  18. Lindley EM, McBeth ZL, Henry SE, Cooley R, Burger EL, Cain CM, Patel VV (2012) Retrograde ejaculation after anterior lumbar spine surgery. Spine (Phila Pa 1976) 37:1785–1789. https://doi.org/10.1097/BRS.0b013e31825752bc

  19. Ouchida J, Kanemura T, Satake K, Nakashima H, Segi N (2019) Anatomic evaluation of retroperitoneal organs for lateral approach surgery: a prospective imaging study using computed tomography in the lateral decubitus position. Eur Spine J 28:835–841. https://doi.org/10.1007/s00586-018-5803-x

    Article  PubMed  Google Scholar 

  20. Schwab FJ, Smith VA, Biserni M, Gamez L, Farcy JP, Pagala M (2002) Adult scoliosis: a quantitative radiographic and clinical analysis. Spine (Phila Pa 1976) 27:387–392. https://doi.org/10.1097/00007632-200202150-00012

  21. Schwab F, Patel A, Ungar B, Farcy JP, Lafage V (2010) Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine (Phila Pa 1976) 35:2224–2231. https://doi.org/10.1097/BRS.0b013e3181ee6bd4

  22. Protopsaltis TS, Soroceanu A, Tishelman JC, Buckland AJ, Mundis GM, Jr., Smith JS, Daniels A, Lenke LG, Kim HJ, Klineberg EO, Ames CP, Hart RA, Bess S, Shaffrey CI, Schwab FJ, Lafage V (2020) Should sagittal spinal alignment targets for adult spinal deformity correction depend on pelvic incidence and age? Spine (Phila Pa 1976) 45:250–257. https://doi.org/10.1097/brs.0000000000003237

  23. Zhou PL, Moon JY, Tishelman JC, Errico TJ, Protopsaltis TS, Passias PG, Buckland AJ (2018) Interpretation of spinal radiographic parameters in patients with transitional lumbosacral vertebrae. Spine Deform 6:587–592. https://doi.org/10.1016/j.jspd.2018.01.004

    Article  PubMed  Google Scholar 

  24. Josiah DT, Boo S, Tarabishy A, Bhatia S (2017) Anatomical differences in patients with lumbosacral transitional vertebrae and implications for minimally invasive spine surgery. J Neurosurg Spine 26:137–143. https://doi.org/10.3171/2016.6.Spine1691

    Article  PubMed  Google Scholar 

  25. Lian J, Levine N, Cho W (2018) A review of lumbosacral transitional vertebrae and associated vertebral numeration. Eur Spine J 27:995–1004. https://doi.org/10.1007/s00586-018-5554-8

    Article  PubMed  Google Scholar 

  26. Molinares DM, Davis TT, Fung DA (2016) Retroperitoneal oblique corridor to the L2–S1 intervertebral discs: an MRI study. J Neurosurg Spine 24:248–255. https://doi.org/10.3171/2015.3.Spine13976

    Article  PubMed  Google Scholar 

  27. Berry CA (2019) Oblique lumbar interbody fusion in patient with persistent left-sided inferior vena cava: case report and review of literature. World Neurosurg 132:58–62. https://doi.org/10.1016/j.wneu.2019.08.176

    Article  PubMed  Google Scholar 

  28. Malham GM, Parker RM, Ellis NJ, Blecher CM, Chow FY, Claydon MH (2014) Anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2: a prospective study of complications. J Neurosurg Spine 21:851–860. https://doi.org/10.3171/2014.8.Spine13524

    Article  PubMed  Google Scholar 

  29. Rajaraman V, Vingan R, Roth P, Heary RF, Conklin L, Jacobs GB (1999) Visceral and vascular complications resulting from anterior lumbar interbody fusion. J Neurosurg 91:60–64. https://doi.org/10.3171/spi.1999.91.1.0060

    Article  CAS  PubMed  Google Scholar 

  30. Tribus CB, Belanger T (2001) The vascular anatomy anterior to the L5-S1 disk space. Spine (Phila Pa 1976) 26:1205–1208. https://doi.org/10.1097/00007632-200106010-00007

  31. Chung N-S, Jeon C-H, Lee H-D, Kweon H-J (2017) Preoperative evaluation of left common iliac vein in oblique lateral interbody fusion at L5–S1. Eur Spine J 26:2797–2803. https://doi.org/10.1007/s00586-017-5176-6

    Article  PubMed  Google Scholar 

  32. Oikawa Y, Eguchi Y, Watanabe A, Orita S, Yamauchi K, Suzuki M, Sakuma Y, Kubota G, Inage K, Sainoh T, Sato J, Fujimoto K, Koda M, Furuya T, Matsumoto K, Masuda Y, Aoki Y, Takahashi K, Ohtori S (2017) Anatomical evaluation of lumbar nerves using diffusion tensor imaging and implications of lateral decubitus for lateral transpsoas approach. Eur Spine J 26:2804–2810. https://doi.org/10.1007/s00586-017-5082-y

    Article  PubMed  Google Scholar 

  33. Buckland AJ, Beaubrun BM, Isaacs E, Moon J, Zhou P, Horn S, Poorman G, Tishelman JC, Day LM, Errico TJ, Passias PG, Protopsaltis T (2018) Psoas morphology differs between supine and sitting magnetic resonance imaging lumbar spine: implications for lateral lumbar interbody fusion. Asian Spine J 12:29–36. https://doi.org/10.4184/asj.2018.12.1.29

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yusof MI, Nadarajan E, Abdullah MS (2014) The morphometric study of l3-L4 and L4-L5 lumbar spine in Asian population using magnetic resonance imaging: feasibility analysis for transpsoas lumbar interbody fusion. Spine (Phila Pa 1976) 39:E811–816. https://doi.org/10.1097/brs.0000000000000368

  35. Benglis DM, Vanni S, Levi AD (2009) An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine. J Neurosurg Spine 10:139–144. https://doi.org/10.3171/2008.10.Spi08479

    Article  PubMed  Google Scholar 

  36. Walker CT, Farber SH, Cole TS, Xu DS, Godzik J, Whiting AC, Hartman C, Porter RW, Turner JD, Uribe J (2019) Complications for minimally invasive lateral interbody arthrodesis: a systematic review and meta-analysis comparing prepsoas and transpsoas approaches 30:446. https://doi.org/10.3171/2018.9.Spine18800

  37. Guerin P, Obeid I, Bourghli A, Masquefa T, Luc S, Gille O, Pointillart V, Vital JM (2012) The lumbosacral plexus: anatomic considerations for minimally invasive retroperitoneal transpsoas approach. Surg Radiol Anat 34:151–157. https://doi.org/10.1007/s00276-011-0881-z

    Article  PubMed  Google Scholar 

  38. Park DK, Lee MJ, Lin EL, Singh K, An HS, Phillips FM (2010) The relationship of intrapsoas nerves during a transpsoas approach to the lumbar spine: anatomic study. J Spinal Disord Tech 23:223–228. https://doi.org/10.1097/BSD.0b013e3181a9d540

    Article  PubMed  Google Scholar 

  39. O'Brien J, Haines C, Dooley ZA, Turner AW, Jackson D (2014) Femoral nerve strain at L4-L5 is minimized by hip flexion and increased by table break when performing lateral interbody fusion. Spine (Phila Pa 1976) 39:33–38. https://doi.org/10.1097/brs.0000000000000039

  40. Rodgers WB, Gerber EJ, Patterson J (2011) Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine (Phila Pa 1976) 36:26–32. https://doi.org/10.1097/BRS.0b013e3181e1040a

  41. Cummock MD, Vanni S, Levi AD, Yu Y, Wang MY (2011) An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion. J Neurosurg Spine 15:11–18. https://doi.org/10.3171/2011.2.Spine10374

    Article  PubMed  Google Scholar 

  42. Buric J (2015) Relationship between psoas muscle dimensions and post operative thigh pain. A possible preoperative evaluation factor. Int J Spine Surg 9:27. https://doi.org/10.14444/2027

  43. Zhang F, Xu H, Yin B, Tao H, Yang S, Sun C, Wang Y, Yin J, Shao M, Wang H, Xia X, Ma X, Lu F, Jiang J (2017) Does right lateral decubitus position change retroperitoneal oblique corridor? A radiographic evaluation from L1 to L5. Eur Spine J 26:646–650. https://doi.org/10.1007/s00586-016-4645-7

    Article  PubMed  Google Scholar 

  44. Oliveira L, Marchi L, Coutinho E, Pimenta L (2010) A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine (Phila Pa 1976) 35:S331–337. https://doi.org/10.1097/BRS.0b013e3182022db0

  45. Wang TY, Nayar G, Brown CR, Pimenta L, Karikari IO, Isaacs RE (2017) Bony lateral recess stenosis and other radiographic predictors of failed indirect decompression via extreme lateral interbody fusion: multi-institutional analysis of 101 consecutive spinal levels. World Neurosurg 106:819–826. https://doi.org/10.1016/j.wneu.2017.07.045

    Article  PubMed  Google Scholar 

  46. Kepler CK, Sharma AK, Huang RC, Meredith DS, Girardi FP, Cammisa FP Jr, Sama AA (2012) Indirect foraminal decompression after lateral transpsoas interbody fusion. J Neurosurg Spine 16:329–333. https://doi.org/10.3171/2012.1.Spine11528

    Article  PubMed  Google Scholar 

  47. Fujibayashi S, Hynes RA, Otsuki B, Kimura H, Takemoto M, Matsuda S (2015) Effect of indirect neural decompression through oblique lateral interbody fusion for degenerative lumbar disease. Spine (Phila Pa 1976) 40:E175–182. https://doi.org/10.1097/brs.0000000000000703

  48. Zhang C, Wang K, Jian F, Wu H (2018) Efficacy of oblique lateral interbody fusion in treatment of degenerative lumbar disease. World Neurosurg. https://doi.org/10.1016/j.wneu.2018.11.139

    Article  PubMed  Google Scholar 

  49. Malham GM, Parker RM, Goss B, Blecher CM (2015) Clinical results and limitations of indirect decompression in spinal stenosis with laterally implanted interbody cages: results from a prospective cohort study. Eur Spine J 24(Suppl 3):339–345. https://doi.org/10.1007/s00586-015-3807-3

    Article  PubMed  Google Scholar 

  50. Berg L, Thoresen H, Neckelmann G, Furunes H, Hellum C, Espeland A (2019) Facet arthropathy evaluation: CT or MRI? Eur Radiol 29:4990–4998. https://doi.org/10.1007/s00330-019-06047-5

    Article  PubMed  Google Scholar 

  51. Stieber J, Quirno M, Cunningham M, Errico TJ, Bendo JA (2009) The reliability of computed tomography and magnetic resonance imaging grading of lumbar facet arthropathy in total disc replacement patients. Spine (Phila Pa 1976) 34:E833–840. https://doi.org/10.1097/BRS.0b013e3181bda50a

  52. Pathria M, Sartoris DJ, Resnick D (1987) Osteoarthritis of the facet joints: accuracy of oblique radiographic assessment. Radiology 164:227–230. https://doi.org/10.1148/radiology.164.1.3588910

    Article  CAS  PubMed  Google Scholar 

  53. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ (2015) Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg 1:2–18. https://doi.org/10.3978/j.issn.2414-469X.2015.10.05

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tannoury T, Kempegowda H, Haddadi K, Tannoury C (2019) Complications associated with minimally invasive anterior to the Psoas (ATP) fusion of the lumbosacral spine. Spine (Phila Pa 1976) 44:E1122-e1129. https://doi.org/10.1097/brs.0000000000003071

  55. Uribe JS, Deukmedjian AR (2015) Visceral, vascular, and wound complications following over 13,000 lateral interbody fusions: a survey study and literature review. Eur Spine J 24:386–396. https://doi.org/10.1007/s00586-015-3806-4

    Article  PubMed  Google Scholar 

  56. Fujibayashi S, Otsuki B, Kimura H, Tanida S, Masamoto K, Matsuda S (2017) Preoperative assessment of the ureter with dual-phase contrast-enhanced computed tomography for lateral lumbar interbody fusion procedures. J Orthop Sci 22:420–424. https://doi.org/10.1016/j.jos.2017.01.009

    Article  PubMed  Google Scholar 

  57. Fujibayashi S, Kawakami N, Asazuma T, Ito M, Mizutani J, Nagashima H, Nakamura M, Sairyo K, Takemasa R, Iwasaki M (2017) Complications associated with lateral interbody fusion: nationwide survey of 2998 Cases during the first 2 years of its use in Japan. Spine (Phila Pa 1976) 42:1478–1484. https://doi.org/10.1097/brs.0000000000002139

  58. Yoon SG, Kim MS, Kwon SC, Lyo IU, Sim HB (2020) Delayed ureter stricture and kidney atrophy after oblique lumbar interbody fusion. World Neurosurg 134:137–140. https://doi.org/10.1016/j.wneu.2019.10.171

    Article  PubMed  Google Scholar 

  59. Balsano M, Carlucci S, Ose M, Boriani L (2015) A case report of a rare complication of bowel perforation in extreme lateral interbody fusion. Eur Spine J 24:405–408. https://doi.org/10.1007/s00586-015-3881-6

    Article  PubMed  Google Scholar 

  60. Fineberg SJ, Nandyala SV, Kurd MF, Marquez-Lara A, Noureldin M, Sankaranarayanan S, Patel AA, Oglesby M, Singh K (2014) Incidence and risk factors for postoperative ileus following anterior, posterior, and circumferential lumbar fusion. Spine J 14:1680–1685. https://doi.org/10.1016/j.spinee.2013.10.015

    Article  PubMed  Google Scholar 

  61. Li JX, Phan K, Mobbs R (2017) Oblique lumbar interbody fusion: technical aspects, operative outcomes, and complications. World Neurosurg 98:113–123. https://doi.org/10.1016/j.wneu.2016.10.074

    Article  CAS  PubMed  Google Scholar 

  62. Malham GM, Wagner TP, Claydon MH (2019) Anterior lumbar interbody fusion in a lateral decubitus position: technique and outcomes in obese patients. J Spine Surg 5:433–442. https://doi.org/10.21037/jss.2019.09.09

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kocak M, Sudakoff GS, Erickson S, Begun F, Datta M (2001) Using MR angiography for surgical planning in pelvic kidney renal cell carcinoma. AJR Am J Roentgenol 177:659–660. https://doi.org/10.2214/ajr.177.3.1770659

    Article  CAS  PubMed  Google Scholar 

  64. Wang H, Zhang Y, Ma X, Xia X, Lu F, Jiang J (2018) Radiographic study of lumbar sympathetic trunk in oblique lateral interbody fusion surgery. World Neurosurg 116:e380–e385. https://doi.org/10.1016/j.wneu.2018.04.212

    Article  PubMed  Google Scholar 

  65. Silvestre C, Mac-Thiong JM, Hilmi R, Roussouly P (2012) Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J 6:89–97. https://doi.org/10.4184/asj.2012.6.2.89

    Article  PubMed  PubMed Central  Google Scholar 

  66. DiGiorgio AM, Edwards CS, Virk MS, Chou D (2018) Lateral prepsoas (oblique) approach nuances. Neurosurg Clin N Am 29:419–426. https://doi.org/10.1016/j.nec.2018.02.003

    Article  PubMed  Google Scholar 

Download references

Funding

Funding was received from NuVasive.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly Ashayeri.

Ethics declarations

Conflicts of interest

J. Alex Thomas is a consultant for NuVasive. Brett Braly is a consultant for Stryker and NuVasive. Ivan Cheng is a consultant for NuVasive and Globus Medical. Brian Kwon is a consultant for NuVasive. Themistocles S. Protopsaltis is a consultant for Altus Partners, Globus Medical, NuVasive, and Zimmer Biomet. Aaron J. Buckland is a consultant for NuVasive, Biedermann Motech, Medtronic, Evolution Spine, Altus Partners, and Zimmer Biomet.

Ethical approval

IRB exempt.

Consent for publication

Permission to reproduce copyrighted material (Fig. 1) was obtained from NuVasive. Permission to reproduce copyrighted material (Fig. 7) was obtained from Wolters Kluwer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buckland, A.J., Ashayeri, K., Leon, C. et al. Anterior column reconstruction of the lumbar spine in the lateral decubitus position: anatomical and patient-related considerations for ALIF, anterior-to-psoas, and transpsoas LLIF approaches. Eur Spine J 31, 2175–2187 (2022). https://doi.org/10.1007/s00586-022-07127-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-022-07127-9

Keywords

Navigation